File size: 15,396 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from detectron2.structures.boxes import Boxes
from ProposalNetwork.proposals.proposals import  propose

from ProposalNetwork.utils.spaces import Cubes
from ProposalNetwork.utils.conversions import cube_to_box, cubes_to_box, normalised_space_to_pixel
from ProposalNetwork.utils.utils import iou_3d

from ProposalNetwork.scoring.scorefunction import score_segmentation, score_dimensions, score_iou, score_angles

from ProposalNetwork.utils.utils import show_mask

import matplotlib.pyplot as plt
import torch
import os
import pickle
import numpy as np

from cubercnn import util, vis
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.utils.visualizer import Visualizer


from math import atan2, cos, sin, sqrt, pi
from skimage.transform import resize
import cv2
from sklearn.decomposition import PCA

from cubercnn.data.generate_ground_segmentations import init_segmentation


def drawAxis(img, p_, q_, color, scale):
  p = list(p_)
  q = list(q_)
 
  ## [visualization1]
  angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
  hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
 
  # Here we lengthen the arrow by a factor of scale
  q[0] = p[0] - scale * hypotenuse * cos(angle)
  q[1] = p[1] - scale * hypotenuse * sin(angle)
  cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
 
  # create the arrow hooks
  p[0] = q[0] + 9 * cos(angle + pi / 4)
  p[1] = q[1] + 9 * sin(angle + pi / 4)
  cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
 
  p[0] = q[0] + 9 * cos(angle - pi / 4)
  p[1] = q[1] + 9 * sin(angle - pi / 4)
  cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
  ## [visualization1]

#torch.manual_seed(1)

# Get image and scale intrinsics
with open('ProposalNetwork/proposals/network_out2.pkl', 'rb') as f:
        batched_inputs, images, proposals, Ks, gt_instances, im_scales_ratio, instances = pickle.load(f)

image = 1
gt_obj = 1

# Necessary Ground Truths
# 2D
gt_box = gt_instances[image].gt_boxes[gt_obj]
# 3D
gt____whlxyz = gt_instances[image].gt_boxes3D[gt_obj]
gt_R = gt_instances[image].gt_poses[gt_obj]
gt_cube_ = Cubes(torch.cat([gt____whlxyz[6:],gt____whlxyz[3:6],gt_R.flatten()]))
gt_cube = gt_cube_.get_cubes()
gt_z = gt_cube_.centers.squeeze()[2]
#print('GT',gt____whlxyz,util.mat2euler(gt_R))
#print(gt_R - util.euler2mat(util.mat2euler(gt_R)))

# image
input_format = 'BGR'
img = batched_inputs[image]['image']

img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
input = batched_inputs[image]

K = torch.tensor(input['K'])
scale = input['height']/img.shape[0]
K_scaled = torch.tensor(
    [[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]], 
    dtype=torch.float32) @ K
reference_box = proposals[image].proposal_boxes[0]

# Get depth info
depth_image = np.load(f"datasets/depth_maps/{batched_inputs[image]['image_id']}.npz")['depth']
depth_image = torch.as_tensor(resize(depth_image,(img.shape[0],img.shape[1])))
# depth_patch = depth_image[int(reference_box.tensor[0,0]):int(reference_box.tensor[0,2]),int(reference_box.tensor[0,1]):int(reference_box.tensor[0,3])]

####################################################################################################################################################################################################################################################################################

# Get Proposals
x_points = [1]#, 10, 100]#, 1000, 10000]#, 100000]
number_of_proposals = 1000

with open('tools/priors.pkl', 'rb') as f:
        priors, Metadatacatalog = pickle.load(f)
category = gt_instances[image].gt_classes[gt_obj]
priors_propose = torch.as_tensor(priors['priors_dims_per_cat'][category]).split(1, dim=0)
pred_cubes, _, _ = propose(reference_box, depth_image, priors_propose, img.shape[:2][::-1], K, number_of_proposals=number_of_proposals, gt_cube=gt_cube_)
proposed_box = cubes_to_box(pred_cubes,K_scaled)

# OB IoU3D
IoU3D = np.array(iou_3d(gt_cube_,pred_cubes))
print('Percentage of cubes with no intersection:',int(np.count_nonzero(IoU3D == 0.0)/IoU3D.size*100))
idx_scores_iou3d = np.argsort(IoU3D)[::-1]
sorted_iou3d_IoU = [IoU3D[i] for i in idx_scores_iou3d]
print('Highest possible IoU3D score',sorted_iou3d_IoU[0])

# OB IoU2D
IoU2D = score_iou(gt_box, proposed_box[0]).numpy()
idx_scores_iou2d = np.argsort(IoU2D)[::-1]
sorted_iou2d_IoU = [IoU3D[i] for i in idx_scores_iou2d]
iou2d_ious = [np.max(sorted_iou2d_IoU[:n]) for n in x_points]
print('IoU3D of best IoU2D score',sorted_iou2d_IoU[0])


# Segment Score
if os.path.exists('ProposalNetwork/mask'+str(image)+'.pkl'):
      # load
     with open('ProposalNetwork/mask'+str(image)+'.pkl', 'rb') as f:
        masks = pickle.load(f)
else:
    predictor = init_segmentation()
    predictor.set_image(img)
    
    input_box = np.array([reference_box.tensor[0,0],reference_box.tensor[0,2],reference_box.tensor[0,1],reference_box.tensor[0,3]])

    masks, _, _ = predictor.predict(
        point_coords=None,
        point_labels=None,
        box=input_box[None, :],
        multimask_output=False,
    )
    # dump
    with open('ProposalNetwork/mask'+str(image)+'.pkl', 'wb') as f:
        pickle.dump(masks, f)

seg_mask = torch.as_tensor(masks[0])
bube_corners = pred_cubes.get_bube_corners(K_scaled)
segment_scores = score_segmentation(seg_mask, bube_corners).numpy()
idx_scores_segment = np.argsort(segment_scores)[::-1]
sorted_segment_IoU = [IoU3D[i] for i in idx_scores_segment]
segment_ious = [np.max(sorted_segment_IoU[:n]) for n in x_points]
print('IoU3D of best segment score',sorted_segment_IoU[0])

# # OB Dimensions
# dimensions = [np.array(pred_cubes[i].dimensions) for i in range(len(pred_cubes))]
# dim_scores = score_dimensions(priors_propose, dimensions)
# idx_scores_dim = np.argsort(dim_scores)[::-1]
# sorted_dim_IoU = [IoU3D[i] for i in idx_scores_dim]
# dim_ious = [np.max(sorted_dim_IoU[:n]) for n in x_points]
# print('IoU3D of best dim score',sorted_dim_IoU[0])

# # Angles
# angles = [np.array(util.mat2euler(pred_cubes[i].rotation)) for i in range(len(pred_cubes))]
# angle_scores = score_angles(util.mat2euler(gt_R),angles)
# idx_scores_angles = np.argsort(angle_scores)[::-1]
# sorted_angles_IoU = [IoU3D[i] for i in idx_scores_angles]
# angle_ious = [np.max(sorted_angles_IoU[:n]) for n in x_points]
# print('IoU3D of best angle score',sorted_angles_IoU[0])

# 2D Contour
seg_mask_uint8 = np.array(seg_mask).astype(np.uint8) * 255
ret, thresh = cv2.threshold(seg_mask_uint8, 0.5, 1, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

contour_x = []
contour_y = []
for i in range(len(contours)):
     for j in range(len(contours[i])):
          contour_x.append(contours[i][j][0][0])
          contour_y.append(contours[i][j][0][1])

# 3rd dimension
contour_z = np.zeros(len(contour_x))
for i in range(len(contour_x)):
     contour_z[i] = depth_image[contour_x[i],contour_y[i]]

min_val = np.min(contour_x)
max_val = np.max(contour_x)
scaled_contour_x = (contour_x - min_val) / (max_val - min_val)

min_val = np.min(contour_y)
max_val = np.max(contour_y)
scaled_contour_y = (contour_y - min_val) / (max_val - min_val)

min_val = np.min(contour_z)
max_val = np.max(contour_z)
scaled_contour_z = (contour_z - min_val) / (max_val - min_val)

contours3D = np.array([scaled_contour_x, scaled_contour_y, scaled_contour_z]).T

# PCA
pca = PCA(n_components=3)
pca.fit(contours3D)
orientations = pca.components_

def gram_schmidt(n):
    # Choose an arbitrary vector
    v1 = np.array([1.0, 0.0, 0.0])  # Choose a simple starting vector
    
    # Normalize the first vector
    v1 /= np.linalg.norm(v1)
    
    # Calculate the second vector using Gram-Schmidt process
    v2 = n - np.dot(n, v1) * v1
    v2 /= np.linalg.norm(v2)
    
    # Calculate the third vector as the cross product of v1 and v2
    v3 = np.cross(v1, v2)
    
    return np.array([v1, v2, v3])

basis = orientations
euler_angles = np.arctan2(basis[2, 1], basis[2, 2]), np.arcsin(-basis[2, 0]), np.arctan2(basis[1, 0], basis[0, 0])
print(basis.T)
print('found angles',np.array(euler_angles) % (pi / 2))
print('gt angles',util.mat2euler(gt_R) % (pi / 2))

def vectors_from_rotation_matrix(rotation_matrix):
    # Extract vectors from rotation matrix
    v1 = rotation_matrix[:, 0]
    v2 = rotation_matrix[:, 1]
    v3 = rotation_matrix[:, 2]

    return np.array([v1, v2, v3])

#orientations = vectors_from_rotation_matrix(np.array(gt_R)) #gt rotation

points_2d_homogeneous = np.dot(K_scaled, orientations.T).T

# Convert homogeneous coordinates to Cartesian coordinates
points_2d = points_2d_homogeneous[:, :2] / points_2d_homogeneous[:, 2:]


# Plotting
# plt.figure()
# plt.plot(x_points, dim_ious, marker='o', linestyle='-',c='green',label='dim') 
# plt.plot(x_points, segment_ious, marker='o', linestyle='-',c='purple',label='segment')
# plt.plot(x_points, iou2d_ious, marker='o', linestyle='-',c='orange',label='2d IoU') 
# plt.plot(x_points, angle_ious, marker='o', linestyle='-',c='darkslategrey',label='angles') 
# plt.grid(True)
# plt.xscale('log')
# plt.xlabel('Number of Proposals')
# plt.ylabel('3D IoU')
# plt.title('IoU vs Number of Proposals')
# plt.legend()
# plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'BO.png'),dpi=300, bbox_inches='tight')

# combined_score = np.array(segment_scores)*np.array(IoU2D)*np.array(dim_scores)*np.array(angle_scores)
# plt.figure()
# plt.hexbin(combined_score, IoU3D, gridsize=10)
# plt.axis([combined_score.min(), combined_score.max(), IoU3D.min(), IoU3D.max()])
# plt.xlabel('score')
# plt.ylabel('3DIoU')
# plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'combined_scores.png'),dpi=300, bbox_inches='tight')

""" Makes only sense when better results
fig, ax = plt.subplots()
ax.scatter(combined_score,IoU3D, alpha=0.3)
heatmap, xedges, yedges = np.histogram2d(combined_score,IoU3D, bins=10)
extent = [xedges[0], xedges[-1]+0.05, yedges[0], yedges[-1]+0.05]
cax = ax.imshow(heatmap.T, extent=extent, origin='lower')
cbar = fig.colorbar(cax)
fig.savefig(os.path.join('ProposalNetwork/output/AMOB', 'combined_scores.png'),dpi=300, bbox_inches='tight')
"""
####################################################################################################################################################################################################################################################################################


# Plot
# Get 2 proposal boxes
box_size = min(len(proposals[image].proposal_boxes), 1)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
    boxes=proposals[image].proposal_boxes[0:box_size].tensor.cpu().numpy()
)

# Take box with highest iou
# pred_meshes = [pred_cubes[idx_scores_iou3d[0]].get_cube().__getitem__(0).detach()]
#print(pred_cubes[idx_scores_iou3d[0]].__repr__)
# Add 3D GT
# meshes_text = ['proposal cube' for _ in range(len(pred_meshes))]
# meshes_text.append('gt cube')
# pred_meshes.append(gt_cube.__getitem__(0).detach())

# fig = plt.figure()
# prop_img = v_pred.get_image()
# ax = fig.add_subplot(111)
# img_3DPR, img_novel, _ = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes,text=meshes_text, blend_weight=0.5, blend_weight_overlay=0.85,scale = img.shape[0])
# im_concat = np.concatenate((img_3DPR, img_novel), axis=1)
# vis_img_3d = img_3DPR.astype(np.uint8)
# ax.imshow(vis_img_3d)
# ax.plot(torch.cat((gt_box.get_all_corners()[:,0],gt_box.get_all_corners()[0,0].reshape(1))),torch.cat((gt_box.get_all_corners()[:,1],gt_box.get_all_corners()[0,1].reshape(1))),color='purple')
# ax.scatter(gt____whlxyz[0],gt____whlxyz[1],color='r')
# plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'box_with_highest_iou.png'),dpi=300, bbox_inches='tight')

distances = np.linalg.norm(points_2d, axis=1)

# Normalize points by dividing each coordinate by its distance from the origin
points_2d = points_2d / np.max(distances)
#points_2d = points_2d / distances[:, np.newaxis]

prop_img = v_pred.get_image()
# Contour Plot
cntr = np.array(gt____whlxyz[:2])
p1 = (cntr[0] + points_2d[0][0], cntr[1] + points_2d[0][1])
p2 = (cntr[0] + points_2d[1][0], cntr[1] + points_2d[1][1])
p3 = (cntr[0] + points_2d[2][0], cntr[1] + points_2d[2][1])

fig = plt.figure(figsize=(15,5))
ax = fig.add_subplot(121)
drawAxis(prop_img, cntr, p1, (255, 255, 0), 150)
drawAxis(prop_img, cntr, p2, (0, 0, 255), 150)
drawAxis(prop_img, cntr, p3, (0, 255, 255), 150)
ax.imshow(prop_img)
ax.axis('off')
ax.set_title('Estimated axes')
# show_mask(seg_mask,ax)
#ax.scatter(contour_x, contour_y, c='r', s=1)
ax2 = fig.add_subplot(122, projection='3d')
ax2.view_init(elev=-89, azim=-92, roll=0)
ax2.scatter(contours3D[:, 0], contours3D[:, 1], contours3D[:, 2], c='r', s=1)
ax2.set_xlabel('x'); ax2.set_ylabel('y'); ax2.set_zlabel('z')
ax2.set_title('3D contour')
plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'contour.png'),dpi=300, bbox_inches='tight')
####################################################################################################################################################################################################################################################################################
exit()

# convert from BGR to RGB
im_concat = im_concat[..., ::-1]
util.imwrite(im_concat, os.path.join('ProposalNetwork/output/AMOB', 'vis_result.jpg'))


# Take box with highest segment
pred_meshes = [pred_cubes[idx_scores_segment[0]].get_cube().__getitem__(0).detach()]

# Add 3D GT
meshes_text = ['highest segment']
meshes_text.append('gt cube')
pred_meshes.append(gt_cube.__getitem__(0).detach())

img_3DPR, _, _ = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes,text=meshes_text, blend_weight=0.5, blend_weight_overlay=0.85,scale = img.shape[0])
vis_img_3d = img_3DPR.astype(np.uint8)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(vis_img_3d)
ax.plot(torch.cat((gt_box.get_all_corners()[:,0],gt_box.get_all_corners()[0,0].reshape(1))),torch.cat((gt_box.get_all_corners()[:,1],gt_box.get_all_corners()[0,1].reshape(1))),color='purple')
show_mask(masks,ax)
plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'box_with_highest_segment.png'),dpi=300, bbox_inches='tight')



# tmp
for i in range(len(IoU3D)):
     if IoU3D[i] == 0.0:
          idx = i
          break
     else:
          idx = -1

pred_meshes = [pred_cubes[idx].get_cube().__getitem__(0).detach()]
meshes_text = ['box with 0 3diou']
meshes_text.append('gt cube')
pred_meshes.append(gt_cube.__getitem__(0).detach())

fig = plt.figure()
ax = fig.add_subplot(111)
prop_img = v_pred.get_image()
img_3DPR, img_novel, _ = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes,text=meshes_text, blend_weight=0.5, blend_weight_overlay=0.85,scale = img.shape[0])
im_concat = np.concatenate((img_3DPR, img_novel), axis=1)
im_concat = im_concat[..., ::-1]
util.imwrite(im_concat, os.path.join('ProposalNetwork/output/AMOB', 'tmp.jpg'))

center = normalised_space_to_pixel(np.array(pred_cubes[idx].center)[:2],img.shape[:2][::-1])
fig = plt.figure()
ax = fig.add_subplot(111)
vis_img_3d = img_3DPR.astype(np.uint8)
ax.imshow(vis_img_3d)
ax.scatter([135.45,135.45,259.76,259.76],[121.6,236.29,121.6,236.29],color='b')
ax.scatter(center[0],center[1],color='r')
plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'tmp2.png'),dpi=300, bbox_inches='tight')