Spaces:
Sleeping
Sleeping
File size: 15,396 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
from detectron2.structures.boxes import Boxes
from ProposalNetwork.proposals.proposals import propose
from ProposalNetwork.utils.spaces import Cubes
from ProposalNetwork.utils.conversions import cube_to_box, cubes_to_box, normalised_space_to_pixel
from ProposalNetwork.utils.utils import iou_3d
from ProposalNetwork.scoring.scorefunction import score_segmentation, score_dimensions, score_iou, score_angles
from ProposalNetwork.utils.utils import show_mask
import matplotlib.pyplot as plt
import torch
import os
import pickle
import numpy as np
from cubercnn import util, vis
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.utils.visualizer import Visualizer
from math import atan2, cos, sin, sqrt, pi
from skimage.transform import resize
import cv2
from sklearn.decomposition import PCA
from cubercnn.data.generate_ground_segmentations import init_segmentation
def drawAxis(img, p_, q_, color, scale):
p = list(p_)
q = list(q_)
## [visualization1]
angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
# Here we lengthen the arrow by a factor of scale
q[0] = p[0] - scale * hypotenuse * cos(angle)
q[1] = p[1] - scale * hypotenuse * sin(angle)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
# create the arrow hooks
p[0] = q[0] + 9 * cos(angle + pi / 4)
p[1] = q[1] + 9 * sin(angle + pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
p[0] = q[0] + 9 * cos(angle - pi / 4)
p[1] = q[1] + 9 * sin(angle - pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
## [visualization1]
#torch.manual_seed(1)
# Get image and scale intrinsics
with open('ProposalNetwork/proposals/network_out2.pkl', 'rb') as f:
batched_inputs, images, proposals, Ks, gt_instances, im_scales_ratio, instances = pickle.load(f)
image = 1
gt_obj = 1
# Necessary Ground Truths
# 2D
gt_box = gt_instances[image].gt_boxes[gt_obj]
# 3D
gt____whlxyz = gt_instances[image].gt_boxes3D[gt_obj]
gt_R = gt_instances[image].gt_poses[gt_obj]
gt_cube_ = Cubes(torch.cat([gt____whlxyz[6:],gt____whlxyz[3:6],gt_R.flatten()]))
gt_cube = gt_cube_.get_cubes()
gt_z = gt_cube_.centers.squeeze()[2]
#print('GT',gt____whlxyz,util.mat2euler(gt_R))
#print(gt_R - util.euler2mat(util.mat2euler(gt_R)))
# image
input_format = 'BGR'
img = batched_inputs[image]['image']
img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
input = batched_inputs[image]
K = torch.tensor(input['K'])
scale = input['height']/img.shape[0]
K_scaled = torch.tensor(
[[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]],
dtype=torch.float32) @ K
reference_box = proposals[image].proposal_boxes[0]
# Get depth info
depth_image = np.load(f"datasets/depth_maps/{batched_inputs[image]['image_id']}.npz")['depth']
depth_image = torch.as_tensor(resize(depth_image,(img.shape[0],img.shape[1])))
# depth_patch = depth_image[int(reference_box.tensor[0,0]):int(reference_box.tensor[0,2]),int(reference_box.tensor[0,1]):int(reference_box.tensor[0,3])]
####################################################################################################################################################################################################################################################################################
# Get Proposals
x_points = [1]#, 10, 100]#, 1000, 10000]#, 100000]
number_of_proposals = 1000
with open('tools/priors.pkl', 'rb') as f:
priors, Metadatacatalog = pickle.load(f)
category = gt_instances[image].gt_classes[gt_obj]
priors_propose = torch.as_tensor(priors['priors_dims_per_cat'][category]).split(1, dim=0)
pred_cubes, _, _ = propose(reference_box, depth_image, priors_propose, img.shape[:2][::-1], K, number_of_proposals=number_of_proposals, gt_cube=gt_cube_)
proposed_box = cubes_to_box(pred_cubes,K_scaled)
# OB IoU3D
IoU3D = np.array(iou_3d(gt_cube_,pred_cubes))
print('Percentage of cubes with no intersection:',int(np.count_nonzero(IoU3D == 0.0)/IoU3D.size*100))
idx_scores_iou3d = np.argsort(IoU3D)[::-1]
sorted_iou3d_IoU = [IoU3D[i] for i in idx_scores_iou3d]
print('Highest possible IoU3D score',sorted_iou3d_IoU[0])
# OB IoU2D
IoU2D = score_iou(gt_box, proposed_box[0]).numpy()
idx_scores_iou2d = np.argsort(IoU2D)[::-1]
sorted_iou2d_IoU = [IoU3D[i] for i in idx_scores_iou2d]
iou2d_ious = [np.max(sorted_iou2d_IoU[:n]) for n in x_points]
print('IoU3D of best IoU2D score',sorted_iou2d_IoU[0])
# Segment Score
if os.path.exists('ProposalNetwork/mask'+str(image)+'.pkl'):
# load
with open('ProposalNetwork/mask'+str(image)+'.pkl', 'rb') as f:
masks = pickle.load(f)
else:
predictor = init_segmentation()
predictor.set_image(img)
input_box = np.array([reference_box.tensor[0,0],reference_box.tensor[0,2],reference_box.tensor[0,1],reference_box.tensor[0,3]])
masks, _, _ = predictor.predict(
point_coords=None,
point_labels=None,
box=input_box[None, :],
multimask_output=False,
)
# dump
with open('ProposalNetwork/mask'+str(image)+'.pkl', 'wb') as f:
pickle.dump(masks, f)
seg_mask = torch.as_tensor(masks[0])
bube_corners = pred_cubes.get_bube_corners(K_scaled)
segment_scores = score_segmentation(seg_mask, bube_corners).numpy()
idx_scores_segment = np.argsort(segment_scores)[::-1]
sorted_segment_IoU = [IoU3D[i] for i in idx_scores_segment]
segment_ious = [np.max(sorted_segment_IoU[:n]) for n in x_points]
print('IoU3D of best segment score',sorted_segment_IoU[0])
# # OB Dimensions
# dimensions = [np.array(pred_cubes[i].dimensions) for i in range(len(pred_cubes))]
# dim_scores = score_dimensions(priors_propose, dimensions)
# idx_scores_dim = np.argsort(dim_scores)[::-1]
# sorted_dim_IoU = [IoU3D[i] for i in idx_scores_dim]
# dim_ious = [np.max(sorted_dim_IoU[:n]) for n in x_points]
# print('IoU3D of best dim score',sorted_dim_IoU[0])
# # Angles
# angles = [np.array(util.mat2euler(pred_cubes[i].rotation)) for i in range(len(pred_cubes))]
# angle_scores = score_angles(util.mat2euler(gt_R),angles)
# idx_scores_angles = np.argsort(angle_scores)[::-1]
# sorted_angles_IoU = [IoU3D[i] for i in idx_scores_angles]
# angle_ious = [np.max(sorted_angles_IoU[:n]) for n in x_points]
# print('IoU3D of best angle score',sorted_angles_IoU[0])
# 2D Contour
seg_mask_uint8 = np.array(seg_mask).astype(np.uint8) * 255
ret, thresh = cv2.threshold(seg_mask_uint8, 0.5, 1, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour_x = []
contour_y = []
for i in range(len(contours)):
for j in range(len(contours[i])):
contour_x.append(contours[i][j][0][0])
contour_y.append(contours[i][j][0][1])
# 3rd dimension
contour_z = np.zeros(len(contour_x))
for i in range(len(contour_x)):
contour_z[i] = depth_image[contour_x[i],contour_y[i]]
min_val = np.min(contour_x)
max_val = np.max(contour_x)
scaled_contour_x = (contour_x - min_val) / (max_val - min_val)
min_val = np.min(contour_y)
max_val = np.max(contour_y)
scaled_contour_y = (contour_y - min_val) / (max_val - min_val)
min_val = np.min(contour_z)
max_val = np.max(contour_z)
scaled_contour_z = (contour_z - min_val) / (max_val - min_val)
contours3D = np.array([scaled_contour_x, scaled_contour_y, scaled_contour_z]).T
# PCA
pca = PCA(n_components=3)
pca.fit(contours3D)
orientations = pca.components_
def gram_schmidt(n):
# Choose an arbitrary vector
v1 = np.array([1.0, 0.0, 0.0]) # Choose a simple starting vector
# Normalize the first vector
v1 /= np.linalg.norm(v1)
# Calculate the second vector using Gram-Schmidt process
v2 = n - np.dot(n, v1) * v1
v2 /= np.linalg.norm(v2)
# Calculate the third vector as the cross product of v1 and v2
v3 = np.cross(v1, v2)
return np.array([v1, v2, v3])
basis = orientations
euler_angles = np.arctan2(basis[2, 1], basis[2, 2]), np.arcsin(-basis[2, 0]), np.arctan2(basis[1, 0], basis[0, 0])
print(basis.T)
print('found angles',np.array(euler_angles) % (pi / 2))
print('gt angles',util.mat2euler(gt_R) % (pi / 2))
def vectors_from_rotation_matrix(rotation_matrix):
# Extract vectors from rotation matrix
v1 = rotation_matrix[:, 0]
v2 = rotation_matrix[:, 1]
v3 = rotation_matrix[:, 2]
return np.array([v1, v2, v3])
#orientations = vectors_from_rotation_matrix(np.array(gt_R)) #gt rotation
points_2d_homogeneous = np.dot(K_scaled, orientations.T).T
# Convert homogeneous coordinates to Cartesian coordinates
points_2d = points_2d_homogeneous[:, :2] / points_2d_homogeneous[:, 2:]
# Plotting
# plt.figure()
# plt.plot(x_points, dim_ious, marker='o', linestyle='-',c='green',label='dim')
# plt.plot(x_points, segment_ious, marker='o', linestyle='-',c='purple',label='segment')
# plt.plot(x_points, iou2d_ious, marker='o', linestyle='-',c='orange',label='2d IoU')
# plt.plot(x_points, angle_ious, marker='o', linestyle='-',c='darkslategrey',label='angles')
# plt.grid(True)
# plt.xscale('log')
# plt.xlabel('Number of Proposals')
# plt.ylabel('3D IoU')
# plt.title('IoU vs Number of Proposals')
# plt.legend()
# plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'BO.png'),dpi=300, bbox_inches='tight')
# combined_score = np.array(segment_scores)*np.array(IoU2D)*np.array(dim_scores)*np.array(angle_scores)
# plt.figure()
# plt.hexbin(combined_score, IoU3D, gridsize=10)
# plt.axis([combined_score.min(), combined_score.max(), IoU3D.min(), IoU3D.max()])
# plt.xlabel('score')
# plt.ylabel('3DIoU')
# plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'combined_scores.png'),dpi=300, bbox_inches='tight')
""" Makes only sense when better results
fig, ax = plt.subplots()
ax.scatter(combined_score,IoU3D, alpha=0.3)
heatmap, xedges, yedges = np.histogram2d(combined_score,IoU3D, bins=10)
extent = [xedges[0], xedges[-1]+0.05, yedges[0], yedges[-1]+0.05]
cax = ax.imshow(heatmap.T, extent=extent, origin='lower')
cbar = fig.colorbar(cax)
fig.savefig(os.path.join('ProposalNetwork/output/AMOB', 'combined_scores.png'),dpi=300, bbox_inches='tight')
"""
####################################################################################################################################################################################################################################################################################
# Plot
# Get 2 proposal boxes
box_size = min(len(proposals[image].proposal_boxes), 1)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=proposals[image].proposal_boxes[0:box_size].tensor.cpu().numpy()
)
# Take box with highest iou
# pred_meshes = [pred_cubes[idx_scores_iou3d[0]].get_cube().__getitem__(0).detach()]
#print(pred_cubes[idx_scores_iou3d[0]].__repr__)
# Add 3D GT
# meshes_text = ['proposal cube' for _ in range(len(pred_meshes))]
# meshes_text.append('gt cube')
# pred_meshes.append(gt_cube.__getitem__(0).detach())
# fig = plt.figure()
# prop_img = v_pred.get_image()
# ax = fig.add_subplot(111)
# img_3DPR, img_novel, _ = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes,text=meshes_text, blend_weight=0.5, blend_weight_overlay=0.85,scale = img.shape[0])
# im_concat = np.concatenate((img_3DPR, img_novel), axis=1)
# vis_img_3d = img_3DPR.astype(np.uint8)
# ax.imshow(vis_img_3d)
# ax.plot(torch.cat((gt_box.get_all_corners()[:,0],gt_box.get_all_corners()[0,0].reshape(1))),torch.cat((gt_box.get_all_corners()[:,1],gt_box.get_all_corners()[0,1].reshape(1))),color='purple')
# ax.scatter(gt____whlxyz[0],gt____whlxyz[1],color='r')
# plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'box_with_highest_iou.png'),dpi=300, bbox_inches='tight')
distances = np.linalg.norm(points_2d, axis=1)
# Normalize points by dividing each coordinate by its distance from the origin
points_2d = points_2d / np.max(distances)
#points_2d = points_2d / distances[:, np.newaxis]
prop_img = v_pred.get_image()
# Contour Plot
cntr = np.array(gt____whlxyz[:2])
p1 = (cntr[0] + points_2d[0][0], cntr[1] + points_2d[0][1])
p2 = (cntr[0] + points_2d[1][0], cntr[1] + points_2d[1][1])
p3 = (cntr[0] + points_2d[2][0], cntr[1] + points_2d[2][1])
fig = plt.figure(figsize=(15,5))
ax = fig.add_subplot(121)
drawAxis(prop_img, cntr, p1, (255, 255, 0), 150)
drawAxis(prop_img, cntr, p2, (0, 0, 255), 150)
drawAxis(prop_img, cntr, p3, (0, 255, 255), 150)
ax.imshow(prop_img)
ax.axis('off')
ax.set_title('Estimated axes')
# show_mask(seg_mask,ax)
#ax.scatter(contour_x, contour_y, c='r', s=1)
ax2 = fig.add_subplot(122, projection='3d')
ax2.view_init(elev=-89, azim=-92, roll=0)
ax2.scatter(contours3D[:, 0], contours3D[:, 1], contours3D[:, 2], c='r', s=1)
ax2.set_xlabel('x'); ax2.set_ylabel('y'); ax2.set_zlabel('z')
ax2.set_title('3D contour')
plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'contour.png'),dpi=300, bbox_inches='tight')
####################################################################################################################################################################################################################################################################################
exit()
# convert from BGR to RGB
im_concat = im_concat[..., ::-1]
util.imwrite(im_concat, os.path.join('ProposalNetwork/output/AMOB', 'vis_result.jpg'))
# Take box with highest segment
pred_meshes = [pred_cubes[idx_scores_segment[0]].get_cube().__getitem__(0).detach()]
# Add 3D GT
meshes_text = ['highest segment']
meshes_text.append('gt cube')
pred_meshes.append(gt_cube.__getitem__(0).detach())
img_3DPR, _, _ = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes,text=meshes_text, blend_weight=0.5, blend_weight_overlay=0.85,scale = img.shape[0])
vis_img_3d = img_3DPR.astype(np.uint8)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(vis_img_3d)
ax.plot(torch.cat((gt_box.get_all_corners()[:,0],gt_box.get_all_corners()[0,0].reshape(1))),torch.cat((gt_box.get_all_corners()[:,1],gt_box.get_all_corners()[0,1].reshape(1))),color='purple')
show_mask(masks,ax)
plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'box_with_highest_segment.png'),dpi=300, bbox_inches='tight')
# tmp
for i in range(len(IoU3D)):
if IoU3D[i] == 0.0:
idx = i
break
else:
idx = -1
pred_meshes = [pred_cubes[idx].get_cube().__getitem__(0).detach()]
meshes_text = ['box with 0 3diou']
meshes_text.append('gt cube')
pred_meshes.append(gt_cube.__getitem__(0).detach())
fig = plt.figure()
ax = fig.add_subplot(111)
prop_img = v_pred.get_image()
img_3DPR, img_novel, _ = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes,text=meshes_text, blend_weight=0.5, blend_weight_overlay=0.85,scale = img.shape[0])
im_concat = np.concatenate((img_3DPR, img_novel), axis=1)
im_concat = im_concat[..., ::-1]
util.imwrite(im_concat, os.path.join('ProposalNetwork/output/AMOB', 'tmp.jpg'))
center = normalised_space_to_pixel(np.array(pred_cubes[idx].center)[:2],img.shape[:2][::-1])
fig = plt.figure()
ax = fig.add_subplot(111)
vis_img_3d = img_3DPR.astype(np.uint8)
ax.imshow(vis_img_3d)
ax.scatter([135.45,135.45,259.76,259.76],[121.6,236.29,121.6,236.29],color='b')
ax.scatter(center[0],center[1],color='r')
plt.savefig(os.path.join('ProposalNetwork/output/AMOB', 'tmp2.png'),dpi=300, bbox_inches='tight') |