File size: 10,229 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import pickle

import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib import pyplot as plt
from PIL import Image
import os

from cubercnn import util, vis
from detectron2.data.catalog import MetadataCatalog
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.layers.nms import batched_nms
from detectron2.utils.visualizer import Visualizer
from cubercnn.data.generate_depth_maps import setup_depth_model, depth_of_images

def make_random_boxes(n_boxes=10):
    # rotation_matrix = torch.rand(3,3)*2*torch.pi

    rotation_matrix = torch.eye(3) # no rotation
    
    # need xyz, whl, and pose (R)
    # whl = torch.rand(3)*0.5
    whl = torch.tensor([0.3, 0.3, 0.3])
    xyz = torch.tensor([-0.1, 0, 1.7])
    # xyz = torch.rand(3)*1
    return xyz, whl, rotation_matrix


def proposals_3d_from_2d(image, pred2d):

    with open('3dboxes/proposals/network_out.pkl', 'rb') as f:
        batched_inputs, images, features, proposals, Ks, gt_instances, im_scales_ratio, instances = pickle.load(f)
    
    n_boxes = 1
    pred_xyz, pred_whl, pred_pose = make_random_boxes(n_boxes=n_boxes)
    pred_xyzwhl = torch.cat((pred_xyz, pred_whl), dim=0)

    pred_colors = torch.tensor([util.get_color(i) for i in range(n_boxes)])/255.0

    pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors)

    input_format = 'BGR'
    img = batched_inputs[0]['image']
    img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
    img_3DPR = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
    input = batched_inputs[0]
    K = torch.tensor(input['K'])
    scale = input['height']/img.shape[0]
    
    K_scaled = torch.tensor(
        [[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]], 
        dtype=torch.float32) @ K
    # convert to lists
    pred_meshes = [pred_meshes.__getitem__(i).detach() for i in range(len(pred_meshes))]

    # horizontal stack 3D GT and pred left/right


    # 2 box
    box_size = min(len(proposals[0].proposal_boxes), 2)
    v_pred = Visualizer(img, None)
    v_pred = v_pred.overlay_instances(
        boxes=proposals[0].proposal_boxes[0:box_size].tensor.cpu().numpy()
    )
    prop_img = v_pred.get_image()
    img_3DPR = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes, text=['3d box'], mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
    # vis_img_3d = img_3DPR[:, :, [2, 1, 0]] # RGB
    vis_img_3d = img_3DPR.astype(np.uint8)
    fig, ax = plt.subplots(); ax.imshow(vis_img_3d); ax.axis('off')
    
    plt.savefig(f'3dboxes/proposals/figs/pred.png', bbox_inches='tight', dpi=300)

    # visualize(batched_inputs, proposals, instances)


    return

def visualize(batched_inputs, proposals, instances):
    # taken from the class ROIHeads3D
    """
    A function used to visualize images and proposals. It shows ground truth
    bounding boxes on the original image and up to 20 top-scoring predicted
    object proposals on the original image. Users can implement different
    visualization functions for different models.
    Args:
        batched_inputs (list): a list that contains input to the model.
        proposals (list): a list that contains predicted proposals. Both
            batched_inputs and proposals should have the same length.
        instances (list): a list that contains predicted RoIhead instances. Both
            batched_inputs and proposals should have the same length.
    """
    max_vis_prop = 2

    device = 'cpu'
    input_format = 'BGR'

    # thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
    thing_classes = ['pedestrian', 'car', 'cyclist', 'van', 'truck', 'traffic cone', 'barrier', 'motorcycle', 'bicycle', 'bus', 'trailer', 'books', 'bottle', 'camera', 'cereal box', 'chair', 'cup', 'laptop', 'shoes', 'towel', 'blinds', 'window', 'lamp', 'shelves', 'mirror', 'sink', 'cabinet', 'bathtub', 'door', 'toilet', 'desk', 'box', 'bookcase', 'picture', 'table', 'counter', 'bed', 'night stand', 'pillow', 'sofa', 'television', 'floor mat', 'curtain', 'clothes', 'stationery', 'refrigerator', 'bin', 'stove', 'oven', 'machine']
    num_classes = len(thing_classes)

    for i, (input, prop, instances_i) in enumerate(zip(batched_inputs, proposals, instances)):

        img = input["image"]            
        img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
        img_3DGT = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
        img_3DPR = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR

        '''
        Visualize the 2D GT and proposal predictions
        '''
        v_gt = Visualizer(img, None)
        v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes)
        anno_img = v_gt.get_image()
        box_size = min(len(prop.proposal_boxes), max_vis_prop)
        v_pred = Visualizer(img, None)
        v_pred = v_pred.overlay_instances(
            boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
        )
        prop_img = v_pred.get_image()
        vis_img_rpn = np.concatenate((anno_img, prop_img), axis=1)
        # fig, ax = plt.subplots(); ax.imshow(vis_img_rpn); ax.axis('off')
        # plt.savefig(f'3dboxes/proposals/figs/vis_img_rpn_{i}.png', bbox_inches='tight', dpi=300)

        '''
        Visualize the 3D GT and predictions
        '''
        K = torch.tensor(input['K'], device=device)
        scale = input['height']/img.shape[0]
        fx, sx = (val.item()/scale for val in K[0, [0, 2]])
        fy, sy = (val.item()/scale for val in K[1, [1, 2]])
        
        K_scaled = torch.tensor(
            [[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]], 
            dtype=torch.float32, device=device
        ) @ K

        gts_per_image = input["instances"]

        gt_classes = gts_per_image.gt_classes
        
        # Filter out irrelevant groundtruth
        fg_selection_mask = (gt_classes != -1) & (gt_classes < num_classes)

        gt_classes = gt_classes[fg_selection_mask]
        gt_class_names = [thing_classes[cls_idx] for cls_idx in gt_classes]
        gt_boxes   = gts_per_image.gt_boxes.tensor[fg_selection_mask]  # 2D boxes
        gt_poses   = gts_per_image.gt_poses[fg_selection_mask]         # GT poses

        # projected 2D center, depth, w, h, l, 3D center
        gt_boxes3D = gts_per_image.gt_boxes3D[fg_selection_mask]

        # this box may have been mirrored and scaled so
        # we need to recompute XYZ in 3D by backprojecting.
        gt_z = gt_boxes3D[:, 2]

        gt_x3D = gt_z * (gt_boxes3D[:, 0] - sx)/fx
        gt_y3D = gt_z * (gt_boxes3D[:, 1] - sy)/fy
        
        # put together the GT boxes
        gt_center_3D = torch.stack((gt_x3D, gt_y3D, gt_z)).T
        gt_boxes3D_XYZ_WHL = torch.cat((gt_center_3D, gt_boxes3D[:, 3:6]), dim=1)

        gt_colors = torch.tensor(
            [util.get_color(i) for i in range(len(gt_boxes3D_XYZ_WHL))], 
            device=device
        )/255.0

        gt_meshes = util.mesh_cuboid(gt_boxes3D_XYZ_WHL, gt_poses, gt_colors)

        # perform a simple NMS, which is not cls dependent. 
        keep = batched_nms(
            instances_i.pred_boxes.tensor, 
            instances_i.scores, 
            torch.zeros(len(instances_i.scores), dtype=torch.long, device=instances_i.scores.device), 
            0.5 # this should come from roi_heads.nms_thresh
        )
        
        keep = keep[:max_vis_prop]
        num_to_visualize = len(keep)

        pred_xyzwhl = torch.cat((instances_i.pred_center_cam[keep], instances_i.pred_dimensions[keep]), dim=1)
        pred_pose = instances_i.pred_pose[keep]

        pred_colors = torch.tensor(
            [util.get_color(i) for i in range(num_to_visualize)], 
            device=device
        )/255.0

        pred_boxes = instances_i.pred_boxes[keep]
        pred_scores = instances_i.scores[keep]
        pred_classes = instances_i.pred_classes[keep]
        pred_class_names = ['{} {:.2f}'.format(thing_classes[cls_idx], score) for cls_idx, score in zip(pred_classes, pred_scores)]
        pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors)
        # print(pred_xyzwhl)
        # convert to lists
        pred_meshes = [pred_meshes.__getitem__(i).detach() for i in range(len(pred_meshes))]
        gt_meshes = [gt_meshes.__getitem__(i) for i in range(len(gt_meshes))]
        
        img_3DPR = vis.draw_scene_view(anno_img, K_scaled.cpu().numpy(), pred_meshes, text=pred_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
        img_3DGT = vis.draw_scene_view(img_3DGT, K_scaled.cpu().numpy(), gt_meshes, text=gt_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)

        # horizontal stack 3D GT and pred left/right
        img_3DGT = img_3DGT[:, :, [2, 1, 0]] # RGB
        vis_img_3d = np.concatenate((img_3DGT, img_3DPR), axis=1)
        vis_img_3d = vis_img_3d.astype(np.uint8)
        fig, ax = plt.subplots(); ax.imshow(vis_img_3d); ax.axis('off')
        plt.savefig(f'3dboxes/proposals/figs/vis_img_3d_{i}.png', bbox_inches='tight', dpi=300)


if __name__ == "__main__":
    # proposals_3d_from_2d(None, None)

    with open('ProposalNetwork/proposals/network_out.pkl', 'rb') as f:
        batched_inputs, images, features, proposals, Ks, gt_instances, im_scales_ratio, instances = pickle.load(f)
    
    n_boxes = 1
    pred_xyz, pred_whl, pred_pose = make_random_boxes(n_boxes=n_boxes)
    pred_xyzwhl = torch.cat((pred_xyz, pred_whl), dim=0)

    pred_colors = torch.tensor([util.get_color(i) for i in range(n_boxes)])/255.0

    pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors)

    input_format = 'BGR'
    img = batched_inputs[0]['image']
    img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)

    depth_model = 'zoedepth'
    # the local:: thing of the model path is just to indicate that the model is loaded local storage
    pretrained_resource = 'local::depth/checkpoints/depth_anything_metric_depth_indoor.pt'
    model = setup_depth_model(depth_model, pretrained_resource)

    resized_pred = depth_of_images(img, model)

    plt.matshow(resized_pred)
    plt.savefig(os.path.join('/work3/s194369/3dod/3dboxes/output/trash', 'depth_img.png'),dpi=300, bbox_inches='tight')
    plt.show()