Spaces:
Sleeping
Sleeping
File size: 8,248 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import random
import torch
import numpy as np
class Plane:
"""
Implementation of planar RANSAC.
Class for Plane object, which finds the equation of a infinite plane using RANSAC algorithim.
Call `fit(.)` to randomly take 3 points of pointcloud to verify inliers based on a threshold.

---
"""
def __init__(self):
self.inliers = []
self.equation = []
def fit(self, pts, thresh=0.05, minPoints=100, maxIteration=1000):
"""
Find the best equation for a plane.
:param pts: 3D point cloud as a `torch.Tensor (N,3)`.
:param thresh: Threshold distance from the plane which is considered inlier.
:param maxIteration: Number of maximum iteration which RANSAC will loop over.
:returns:
- `self.equation`: Parameters of the plane using Ax+By+Cy+D `torch.Tensor(4)`
- `self.inliers`: points from the dataset considered inliers
---
"""
n_points = pts.shape[0]
best_eq = []
best_inliers = []
for it in range(maxIteration):
# Samples 3 random points
id_samples = torch.randperm(n_points)[:3]
pt_samples = pts[id_samples]
# We have to find the plane equation described by those 3 points
# We find first 2 vectors that are part of this plane
# A = pt2 - pt1
# B = pt3 - pt1
vecA = pt_samples[1, :] - pt_samples[0, :]
vecB = pt_samples[2, :] - pt_samples[0, :]
# Now we compute the cross product of vecA and vecB to get vecC which is normal to the plane
vecC = torch.cross(vecA, vecB)
# The plane equation will be vecC[0]*x + vecC[1]*y + vecC[0]*z = -k
# We have to use a point to find k
vecC = vecC / torch.norm(vecC, p=2)
k = -torch.sum(torch.mul(vecC, pt_samples[1, :]))
plane_eq = torch.tensor([vecC[0], vecC[1], vecC[2], k])
# Distance from a point to a plane
# https://mathworld.wolfram.com/Point-PlaneDistance.html
pt_id_inliers = [] # list of inliers ids
dist_pt = (
plane_eq[0] * pts[:, 0] + plane_eq[1] * pts[:, 1] + plane_eq[2] * pts[:, 2] + plane_eq[3]
) / torch.sqrt(plane_eq[0] ** 2 + plane_eq[1] ** 2 + plane_eq[2] ** 2)
# Select indexes where distance is smaller than the threshold
pt_id_inliers = torch.where(torch.abs(dist_pt) <= thresh)[0]
if len(pt_id_inliers) > len(best_inliers):
best_eq = plane_eq
best_inliers = pt_id_inliers
self.inliers = best_inliers
self.equation = best_eq
return -self.equation, self.inliers
def fit_parallel(self, pts:torch.Tensor, thresh=0.05, minPoints=100, maxIteration=1000):
"""
Find the best equation for a plane.
:param pts: 3D point cloud as a `torch.Tensor (N,3)`.
:param thresh: Threshold distance from the plane which is considered inlier.
:param maxIteration: Number of maximum iteration which RANSAC will loop over.
:returns:
- `self.equation`: Parameters of the plane using Ax+By+Cy+D `torch.Tensor(4)`
- `self.inliers`: points from the dataset considered inliers
---
"""
n_points = pts.shape[0]
# Samples shape (maxIteration, 3) random points
id_samples = torch.tensor([random.sample(range(0, n_points), 3) for _ in range(maxIteration)],device=pts.device)
pt_samples = pts[id_samples]
# We have to find the plane equation described by those 3 points
# We find first 2 vectors that are part of this plane
# A = pt2 - pt1
# B = pt3 - pt1
vecA = pt_samples[:, 1, :] - pt_samples[:, 0, :]
vecB = pt_samples[:, 2, :] - pt_samples[:, 0, :]
# Now we compute the cross product of vecA and vecB to get vecC which is normal to the plane
vecC = torch.cross(vecA, vecB, dim=-1)
# The plane equation will be vecC[0]*x + vecC[1]*y + vecC[0]*z = -k
# We have to use a point to find k
vecC = vecC / torch.norm(vecC, p=2, dim=1, keepdim=True)
k = -torch.sum(torch.mul(vecC, pt_samples[:, 1, :]), dim=1)
plane_eqs = torch.column_stack([vecC[:, 0], vecC[:, 1], vecC[:, 2], k])
# Distance from a point to a plane
# https://mathworld.wolfram.com/Point-PlaneDistance.html
dist_pt = (
plane_eqs[:,0].unsqueeze(1) * pts[:, 0] + plane_eqs[:,1].unsqueeze(1) * pts[:, 1] + plane_eqs[:,2].unsqueeze(1) * pts[:, 2] + plane_eqs[:,3].unsqueeze(1)
) / torch.sqrt(plane_eqs[:,0] ** 2 + plane_eqs[:,1] ** 2 + plane_eqs[:,2] ** 2).unsqueeze(1)
# Select indexes where distance is smaller than the threshold
# maxIteration x n_points
# row with most inliers
pt_id_inliers = torch.abs(dist_pt) <= thresh
counts = torch.sum(pt_id_inliers, dim=1)
best_eq = plane_eqs[torch.argmax(counts)]
best_inliers_id = pt_id_inliers[torch.argmax(counts)]
# convert boolean tensor to indices
best_inliers = torch.where(best_inliers_id)[0]
self.inliers = best_inliers
self.equation = best_eq
return -self.equation, self.inliers
class Plane_np:
"""
Implementation of planar RANSAC.
Class for Plane object, which finds the equation of a infinite plane using RANSAC algorithim.
Call `fit(.)` to randomly take 3 points of pointcloud to verify inliers based on a threshold.

---
"""
def __init__(self):
self.inliers = []
self.equation = []
def fit(self, pts, thresh=0.05, minPoints=100, maxIteration=1000):
"""
Find the best equation for a plane.
:param pts: 3D point cloud as a `np.array (N,3)`.
:param thresh: Threshold distance from the plane which is considered inlier.
:param maxIteration: Number of maximum iteration which RANSAC will loop over.
:returns:
- `self.equation`: Parameters of the plane using Ax+By+Cy+D `np.array (1, 4)`
- `self.inliers`: points from the dataset considered inliers
---
"""
n_points = pts.shape[0]
best_eq = []
best_inliers = []
for it in range(maxIteration):
# Samples 3 random points
id_samples = random.sample(range(0, n_points), 3)
pt_samples = pts[id_samples]
# We have to find the plane equation described by those 3 points
# We find first 2 vectors that are part of this plane
# A = pt2 - pt1
# B = pt3 - pt1
vecA = pt_samples[1, :] - pt_samples[0, :]
vecB = pt_samples[2, :] - pt_samples[0, :]
# Now we compute the cross product of vecA and vecB to get vecC which is normal to the plane
vecC = np.cross(vecA, vecB)
# The plane equation will be vecC[0]*x + vecC[1]*y + vecC[0]*z = -k
# We have to use a point to find k
vecC = vecC / np.linalg.norm(vecC)
k = -np.sum(np.multiply(vecC, pt_samples[1, :]))
plane_eq = [vecC[0], vecC[1], vecC[2], k]
# Distance from a point to a plane
# https://mathworld.wolfram.com/Point-PlaneDistance.html
pt_id_inliers = [] # list of inliers ids
dist_pt = (
plane_eq[0] * pts[:, 0] + plane_eq[1] * pts[:, 1] + plane_eq[2] * pts[:, 2] + plane_eq[3]
) / np.sqrt(plane_eq[0] ** 2 + plane_eq[1] ** 2 + plane_eq[2] ** 2)
# Select indexes where distance is biggers than the threshold
pt_id_inliers = np.where(np.abs(dist_pt) <= thresh)[0]
if len(pt_id_inliers) > len(best_inliers):
best_eq = plane_eq
best_inliers = pt_id_inliers
self.inliers = best_inliers
self.equation = best_eq
return self.equation, self.inliers
|