File size: 20,206 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import torch
import numpy as np
import matplotlib.pyplot as plt
#import open3d as o3d

from detectron2.structures import pairwise_iou
from pytorch3d.ops import box3d_overlap

##### Proposal
def normalize_vector(v):
    v_mag = torch.sqrt(v.pow(2).sum())
    v_mag = torch.max(v_mag, torch.tensor([1e-8], device=v.device))
    v_mag = v_mag.view(1,1).expand(1,v.shape[0])
    v = v/v_mag

    return v[0]
    
def cross_product(u, v):
    i = u[1]*v[2] - u[2]*v[1]
    j = u[2]*v[0] - u[0]*v[2]
    k = u[0]*v[1] - u[1]*v[0]
    out = torch.cat((i.view(1,1), j.view(1,1), k.view(1,1)),1)
        
    return out[0]

def compute_rotation_matrix_from_ortho6d(poses):
    x_raw = poses[0:3]
    y_raw = poses[3:6]
        
    x = normalize_vector(x_raw)
    z = cross_product(x,y_raw)
    z = normalize_vector(z)
    y = cross_product(z,x)
        
    x = x.view(-1,3,1)
    y = y.view(-1,3,1)
    z = z.view(-1,3,1)
    matrix = torch.cat((x,y,z), 2)[0]

    return matrix

def sample_normal_in_range(means, stds, count, threshold_low=None, threshold_high=None):
    device = means.device
    # Generate samples from a normal distribution
    samples = torch.normal(means.unsqueeze(1).expand(-1,count), stds.unsqueeze(1).expand(-1,count))

    # Ensure that all samples are greater than threshold_low and less than threshold_high
    if threshold_high is not None and threshold_low is not None:
        tries = 0
        threshold_high = threshold_high.unsqueeze(1).expand_as(samples)
        while torch.any((samples < threshold_low) | (samples > threshold_high)):
            invalid_mask = (samples < threshold_low) | (samples > threshold_high)
            # Replace invalid samples with new samples drawn from the normal distribution, could be done more optimal by sampling only sum(invalid mask) new samples, but matching of correct means is difficult then
            samples[invalid_mask] = torch.normal(means.unsqueeze(1).expand(-1,count), stds.unsqueeze(1).expand(-1,count))[invalid_mask]
            
            tries += 1
            if tries == 10000:
                break

    return samples.to(device)

def randn_orthobasis_torch(num_samples=1,num_instances=1):
    z = torch.randn(num_instances, num_samples, 3, 3)
    z = z / torch.norm(z, p=2, dim=-1, keepdim=True)
    z[:, :, 0] = torch.cross(z[:, :, 1], z[:, :, 2], dim=-1)
    z[:, :, 0] = z[:, :, 0] / torch.norm(z[:, :, 0], dim=-1, keepdim=True)
    z[:, :, 1] = torch.cross(z[:, :, 2], z[:, :, 0], dim=-1)
    z[:, :, 1] = z[:, :, 1] / torch.norm(z[:, :, 1], dim=-1, keepdim=True)
    return z

def randn_orthobasis(num_samples=1):
    z = np.random.randn(num_samples, 3, 3)
    z = z / np.linalg.norm(z, axis=-1, keepdims=True)
    z[:, 0] = np.cross(z[:, 1], z[:, 2], axis=-1)
    z[:, 0] = z[:, 0] / np.linalg.norm(z[:, 0], axis=-1, keepdims=True)
    z[:, 1] = np.cross(z[:, 2], z[:, 0], axis=-1)
    z[:, 1] = z[:, 1] / np.linalg.norm(z[:, 1], axis=-1, keepdims=True)
    return z

# ##things for making rotations
def vec_perp(vec):
    '''generate a vector perpendicular to vec in 3d'''
    # https://math.stackexchange.com/a/2450825
    a, b, c = vec
    if a == 0:
        return np.array([0,c,-b])
    return np.array(normalize_vector(torch.tensor([b,-a,0])))

def orthobasis_from_normal(normal, yaw_angle=0):
    '''generate an orthonormal/Rotation matrix basis from a normal vector in 3d
     
       returns a 3x3 matrix with the basis vectors as columns, 3rd column is the original normal vector
    '''
    x = rotate_vector(vec_perp(normal), normal, yaw_angle)
    x = x / np.linalg.norm(x, ord=2)
    y = np.cross(normal, x)
    return np.array([x, normal, y]).T # the vectors should be as columns

def rotate_vector(v, k, theta):
    '''rotate a vector v around an axis k by an angle theta
    it is assumed that k is a unit vector (p2 norm = 1)'''
    # https://medium.com/@sim30217/rodrigues-rotation-formula-47489db49050
    cos_theta = np.cos(theta)
    sin_theta = np.sin(theta)
    
    term1 = v * cos_theta
    term2 = np.cross(k, v) * sin_theta
    term3 = k * np.dot(k, v) * (1 - cos_theta)
    
    return term1 + term2 + term3

def vec_perp_t(vec):
    '''generate a vector perpendicular to vec in 3d'''
    # https://math.stackexchange.com/a/2450825
    a, b, c = vec
    if a == 0:
        return torch.tensor([0,c,-b], device=vec.device)
    return normalize_vector(torch.tensor([b,-a,0], device=vec.device))

def orthobasis_from_normal_t(normal:torch.Tensor, yaw_angles:torch.Tensor=0):
    '''generate an orthonormal/Rotation matrix basis from a normal vector in 3d

        normal is assumed to be normalised 
     
       returns a (no. of yaw_angles)x3x3 matrix with the basis vectors as columns, 3rd column is the original normal vector
    '''
    n = len(yaw_angles)
    x = rotate_vector_t(vec_perp_t(normal), normal, yaw_angles)
    # x = x / torch.norm(x, p=2)
    y = torch.cross(normal.view(-1,1), x)
    # y = y / torch.norm(y, p=2, dim=1)
    return torch.cat([x.t(), normal.unsqueeze(0).repeat(n, 1), y.t()],dim=1).reshape(n,3,3).transpose(2,1) # the vectors should be as columns

def rotate_vector_t(v, k, theta):
    '''rotate a vector v around an axis k by an angle theta
    it is assumed that k is a unit vector (p2 norm = 1)'''
    # https://medium.com/@sim30217/rodrigues-rotation-formula-47489db49050
    cos_theta = torch.cos(theta)
    sin_theta = torch.sin(theta)
    v2 = v.view(-1,1)

    term1 = v2 * cos_theta
    term2 = torch.cross(k, v).view(-1, 1) * sin_theta
    term3 = (k * (k @ v)).view(-1, 1) * (1 - cos_theta)
    
    return (term1 + term2 + term3)

# ########### End rotations
def gt_in_norm_range(range,gt):
    tmp = gt-range[0]
    res = tmp / abs(range[1] - range[0])

    return res

    if range[0] > 0: # both positive
        tmp = gt-range[0]
        res = tmp / abs(range[1] - range[0])
    elif range[1] > 0: # lower negative upper positive
        if gt > 0:
            tmp = gt-range[0]
        else:
            tmp = range[1]-gt
        res = tmp / abs(range[1] - range[0])
    else: # both negative
        tmp = range[1]-gt
        res = tmp / abs(range[1] - range[0])

    return res

def vectorized_linspace(start_tensor, end_tensor, number_of_steps):
    # Calculate spacing
    spacing = (end_tensor - start_tensor) / (number_of_steps - 1)
    # Create linear spaces with arange
    linear_spaces = torch.arange(start=0, end=number_of_steps, dtype=start_tensor.dtype, device=start_tensor.device)
    linear_spaces = linear_spaces.repeat(start_tensor.size(0),1)
    linear_spaces = linear_spaces * spacing[:,None] + start_tensor[:,None]
    return linear_spaces







##### Scoring
def iou_2d(gt_box, proposal_boxes):
    '''
    gt_box: Boxes
    proposal_box: Boxes
    '''
    IoU = pairwise_iou(gt_box,proposal_boxes).flatten()
    return IoU

def iou_3d(gt_cube, proposal_cubes):
    """
    Compute the Intersection over Union (IoU) of two 3D cubes.

    Parameters:
    - gt_cube: GT Cube.
    - proposal_cube: List of Proposal Cubes.

    Returns:
    - iou: Intersection over Union (IoU) value.
    """
    gt_corners = gt_cube.get_all_corners()[0]
    proposal_corners = proposal_cubes.get_all_corners()[0]
    vol, iou = box3d_overlap(gt_corners,proposal_corners)
    iou = iou[0]

    return iou

def custom_mapping(x,beta=1.7):
    '''
    maps the input curve to be S shaped instead of linear
    
    Args:
    beta: number > 1, higher beta is more aggressive
    x: list of floats betweeen and including 0 and 1
    beta: number > 1 higher beta is more aggressive
    '''
    mapped_list = []
    for i in range(len(x)):
        if x[i] <= 0:
            mapped_list.append(0.0)
        else:
            mapped_list.append((1 / (1 + (x[i] / (1 - x[i])) ** (-beta))))
    
    return mapped_list

def mask_iou(segmentation_mask, bube_mask):
    '''
    Area is of segmentation_mask
    '''
    bube_mask = torch.tensor(bube_mask, device=segmentation_mask.device)
    intersection = (segmentation_mask * bube_mask).sum()
    if intersection == 0:
        return torch.tensor(0.0)
    union = torch.logical_or(segmentation_mask, bube_mask).to(torch.int).sum()
    return intersection / union

def mod_mask_iou(segmentation_mask, bube_mask):
    '''
    Area is of segmentation_mask
    '''
    bube_mask = torch.tensor(bube_mask, device=segmentation_mask.device)
    intersection = (segmentation_mask * bube_mask).sum()
    if intersection == 0:
        return torch.tensor(0.0)
    union = torch.logical_or(segmentation_mask, bube_mask).to(torch.int).sum()
    return intersection**5 / union # NOTE not standard IoU

def mask_iou_loss(segmentation_mask, bube_mask):
    '''
    Area is of segmentation_mask
    '''
    intersection = (segmentation_mask * bube_mask).sum()
    if intersection == 0:
        return torch.tensor(0.0)
    union = torch.logical_or(segmentation_mask, bube_mask).to(torch.int).sum()
    return intersection / union

def is_gt_included(gt_cube,x_range,y_range,z_range, w_prior, h_prior, l_prior):
    # Define how far away dimensions need to be to be counted as unachievable
    stds_away = 1.5
    # Center
    because_of = []
    if not (x_range[0] < gt_cube.center[0] < x_range[1]):
        if (gt_cube.center[0] < x_range[0]):
            val = abs(x_range[0] - gt_cube.center[0])
        else:
            val = abs(gt_cube.center[0] - x_range[1])
        because_of.append(f'x by {val:.1f}')
    if not (y_range[0] < gt_cube.center[1] < y_range[1]):
        if (gt_cube.center[1] < y_range[0]):
            val = abs(y_range[0] - gt_cube.center[1])
        else:
            val = abs(gt_cube.center[1] - y_range[1])
        because_of.append(f'y by {val:.1f}')
    # Depth
    if not (z_range[0] < gt_cube.center[2] < z_range[1]):
        if (gt_cube.center[2] < z_range[0]):
            val = abs(z_range[0] - gt_cube.center[2])
        else:
            val = abs(gt_cube.center[2] - z_range[1])
        because_of.append(f'z by {val:.1f}')
    # Dimensions
    if (gt_cube.dimensions[0] < w_prior[0]-stds_away*w_prior[1]):
        because_of.append('w-')
    if (gt_cube.dimensions[0] > w_prior[0]+stds_away*w_prior[1]):
        because_of.append('w+')
    if (gt_cube.dimensions[1] < h_prior[0]-stds_away*h_prior[1]):
        because_of.append('h-')
    if (gt_cube.dimensions[1] > h_prior[0]+stds_away*h_prior[1]):
        because_of.append('h+')
    if (gt_cube.dimensions[2] < l_prior[0]-stds_away*l_prior[1]):
        because_of.append('l-')
    if (gt_cube.dimensions[2] > l_prior[0]+stds_away*l_prior[1]):
        because_of.append('l+')
    if because_of == []:
        return True
    else:
        print('GT cannot be found due to',because_of)
        return False

    # rotation nothing yet

def euler_to_unit_vector(eulers):
    """
    Convert Euler angles to a unit vector.
    """
    yaw, pitch, roll = eulers
    
    # Calculate the components of the unit vector
    x = np.cos(yaw) * np.cos(pitch)
    y = np.sin(yaw) * np.cos(pitch)
    z = np.sin(pitch)
    
    # Normalize the vector
    length = np.sqrt(x**2 + y**2 + z**2)
    unit_vector = np.array([x, y, z]) / length
    
    return unit_vector


# helper functions for plotting segmentation masks
def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def show_mask2(masks:np.array, im:np.array, random_color=False):
    """
    Display the masks on top of the image.

    Args:
        masks (np.array): Array of masks with shape (h, w, 4).
        im (np.array): Image with shape (h, w, 3).
        random_color (bool, optional): Whether to use random colors for the masks. Defaults to False.

    Returns:
        np.array: Image with masks displayed on top.
    """
    im_expanded = np.concatenate((im, np.ones((im.shape[0],im.shape[1],1))*255), axis=-1)/255

    mask_image = np.zeros((im.shape[0],im.shape[1],4))
    for i, mask in enumerate(masks):
        if isinstance(random_color, list):
            color = random_color[i]
        else:
            color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
        h, w = mask.shape[-2:]
        mask_sub = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
        mask_image = mask_image + mask_sub
    mask_binary = (mask_image > 0).astype(bool)
    im_out = im_expanded * ~mask_binary + (0.5* mask_image + 0.5 * (im_expanded * mask_binary))
    im_out = im_out.clip(0,1)
    return im_out
    
def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)   
    
def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))    















# Convex Hull
import torch

def direction(p1, p2, p3):
    return (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0])

def distance_sq(p1, p2):
    return (p2[0] - p1[0])**2 + (p2[1] - p1[1])**2

def findDuplicates(arr): 
    Len = len(arr)
    ifPresent = False
    a1 = []
    idx = []
    for i in range(Len - 1): 
        for j in range(i + 1, Len): 
            # Checking if element is present in the ArrayList or not if present then break 
            if torch.all(arr[i] == arr[j]): 
                # if len(a1) == 0:
                #     a1 arr[i]
                #     idx.append(i)
                #     ifPresent = True
                # else:
                #     # if arr[i] in a1: 
                #     #     break
                #     # # If element is not present in the ArrayList then add it to ArrayList and make ifPresent true 
                #     # else: 
                a1.append(arr[i])
                idx.append(i)
                ifPresent = True
                    
    if ifPresent: 
        return set(idx) # lazi inefficient implementation
    else:
        return None

def jarvis_march(points):
    '''https://algorithmtutor.com/Computational-Geometry/Convex-Hull-Algorithms-Jarvis-s-March/
    https://algorithmtutor.com/Computational-Geometry/Determining-if-two-consecutive-segments-turn-left-or-right/ '''
    # remove duplicates
    duplicates = findDuplicates(points)
    # this is necessary if there are > 2 duplicates of the same element
    if duplicates is not None:
        plusone = torch.zeros_like(points)
        for i, d in enumerate(duplicates):
            plusone[d] += i + 1
        points = points + plusone

    # find the lower left point
    min_x = torch.min(points[:, 0])
    candidates = (points[:, 0] == min_x).nonzero(as_tuple=True)[0]

    # If there are multiple points, choose the one with the highest y value
    if len(candidates) > 1:
        index = candidates[torch.argmax(points[candidates][:, 1])]
    else:
        index = candidates[0]
    
    a = points[index]
    
    # selection sort
    l = index
    result = []
    result.append(a)

    while (True):
        q = (l + 1) % len(points)
        for i in range(len(points)):
            if i == l:
                continue
            # find the greatest left turn
            # in case of collinearity, consider the farthest point
            d = direction(points[l], points[i], points[q])
            if d > 0 or (d == 0 and distance_sq(points[i], points[l]) > distance_sq(points[q], points[l])):
                q = i
        l = q
        if l == index:
            break
        result.append(points[q])

    return torch.flip(torch.stack(result), [0,])

def fill_polygon(mask, polygon):
    '''
    inspired by https://web.archive.org/web/20120323102807/http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
    '''
    h, w = mask.shape
    Y, X = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij') # or xy??? xy is the numpy was
    grid_coords = torch.stack([X.flatten(), Y.flatten()], dim=1).float().to(mask.device)
    
    new_mask = torch.ones(h, w, device=mask.device)
    zeros = torch.zeros(h, w, device=mask.device)
    ones = torch.ones(h, w, device=mask.device)
    
    # For some reason it is easier for me to comprehend the algorithm if we iterate counter-clockwise
    for i in range(len(polygon)):
        v1 = polygon[i]
        v2 = polygon[(i + 1) % len(polygon)]
        
        # Determine the direction of the edge
        edge_direction = v2 - v1
        
        # Given a line segment between P0 (x0,y0) and P1 (x1,y1), another point P (x,y) has the following relationship to the line segment.
        # Compute
        # (y - y0) (x1 - x0) - (x - x0) (y1 - y0)
        # Check if the point is to the left of the edge
        points = (grid_coords[:, 0] - v1[0]) * edge_direction[1] - (grid_coords[:, 1] - v1[1]) * edge_direction[0]
        # we can do the threshold in a clever differentiable way
        # this sets all values to be between 0 and 1
        is_left = torch.min(torch.max(points.view(h, w), zeros), ones)
        
        # do the intersection of the 2 masks, this progressily builds op the polygon
        new_mask = new_mask * is_left

    return new_mask

def convex_hull(mask, coords):
    hull = jarvis_march(coords)
    new_mask = fill_polygon(mask, hull)
    return new_mask

if __name__ == '__main__':
    import matplotlib.pyplot as plt
    mask = torch.zeros(700, 700, dtype=torch.bool)
    # p = torch.tensor([[5,6],[21.0,7],[21,20],[10,20],[15,20],[5,20],[11,8],[15,15],[17,6],[11,15]])

    p = torch.tensor([[271.0000, 356.0000],
                    [ 25.3744, 356.0000],
                    [  0.0000, 356.0000],
                    [  0.0000,  89.5266],
                    [271.0000, 159.3112],
                    [ 95.5653, 201.7484],
                    [  0.0000,   0.0000],
                    [271.0000,   0.0000]])
    
    p2 = torch.tensor([[150.3456,   0.0000],
                    [479.0000,   0.0000],
                    [ 11.8427,   0.0000],
                    [  0.0000,   0.0000],
                    [121.4681, 232.5976],
                    [375.6230, 383.9329],
                    [ 12.8765, 630.0000],
                    [  0.0000, 344.7250]])
    
    p3 = torch.tensor([[290.9577, 171.1176],
                    [197.7348, 483.7612],
                    [383.0000, 504.0000],
                    [383.0000,  27.6211],
                    [  2.2419,  52.6505],
                    [  0.0000, 399.6908],
                    [  0.0000, 504.0000],
                    [  0.0000,   0.0000]])
    
    p4 = torch.tensor([[271.0000,  19.5241],
                    [271.0000, 356.0000],
                    [  0.0000,   0.0000],
                    [271.0000,   0.0000],
                    [  0.0000,   0.0000],
                    [163.0264,  77.9408],
                    [164.2467, 321.0222],
                    [  0.0000, 356.0000],
                    [  0.0000,   0.0000]])
    
    p5 = torch.tensor([[272.0000,   1.0000],
                    [  0.0000, 173.5156],
                    [ 74.8860, 141.3913],
                    [253.8221,   0.0000],
                    [271.0000,   0.0000],
                    [271.0000, 356.0000],
                    [262.5294, 327.9978],
                    [271.0000, 120.8048]])

    mask5 = convex_hull(mask, p5)
    mask4 = convex_hull(mask, p4)
    mask1 = convex_hull(mask, p)
    mask2 = convex_hull(mask, p2)
    mask3 = convex_hull(mask, p3)
    fig, ax = plt.subplots(1,5, figsize=(20,5))
    ax[0].scatter(p[:,0], p[:,1], c='r')
    ax[1].scatter(p2[:,0], p2[:,1], c='b')
    ax[2].scatter(p3[:,0], p3[:,1], c='g')
    ax[3].scatter(p4[:,0], p4[:,1], c='y')
    ax[4].scatter(p5[:,0], p5[:,1], c='m')

    ax[0].imshow(mask1)
    ax[1].imshow(mask2)
    ax[2].imshow(mask3)
    ax[3].imshow(mask4)
    ax[4].imshow(mask5)
    plt.show()
    a = 2