File size: 6,115 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import matplotlib.pyplot as plt
import numpy as np
import torch
from cubercnn import util

# From this awesome guy
# https://math.stackexchange.com/a/4832876


# https://math.stackexchange.com/questions/442418/random-generation-of-rotation-matrices/1602779#1602779
# http://home.lu.lv/~sd20008/papers/essays/Random%20unitary%20[paper].pdf
# https://github.com/alecjacobson/gptoolbox/blob/master/matrix/rand_rotation.m
def qr_full(num_samples=1):
    z = np.random.randn(num_samples, 3, 3)
    q, r = np.linalg.qr(z)
    sign = 2 * (np.diagonal(r, axis1=-2, axis2=-1) >= 0) - 1
    rot = q
    rot *= sign[..., None, :]
    rot[:, 0, :] *= np.linalg.det(rot)[..., None]
    return rot

def qr_full_torch(num_samples=1):
    z = torch.randn(num_samples, 3, 3)
    q, r = torch.linalg.qr(z)
    sign = 2 * (torch.diagonal(r, dim1=-2, dim2=-1) >= 0) - 1
    rot = q
    rot *= sign[..., None, :]
    rot[:, 0, :] *= torch.linalg.det(rot)[..., None]
    return rot

def randn_orthobasis_torch(num_samples=1):
    z = torch.randn(num_samples, 3, 3)
    z = z / torch.norm(z, p=2, dim=-1, keepdim=True)
    z[:, 0] = torch.cross(z[:, 1], z[:, 2], dim=-1)
    z[:, 0] = z[:, 0] / torch.norm(z[:, 0], dim=-1, keepdim=True)
    z[:, 1] = torch.cross(z[:, 2], z[:, 0], dim=-1)
    z[:, 1] = z[:, 1] / torch.norm(z[:, 1], dim=-1, keepdim=True)
    return z

# https://math.stackexchange.com/questions/442418/random-generation-of-rotation-matrices/1288873#1288873
# https://math.stackexchange.com/questions/44689/how-to-find-a-random-axis-or-unit-vector-in-3d/44701#44701
def randn_orthobasis(num_samples=1):
    z = np.random.randn(num_samples, 3, 3)
    z = z / np.linalg.norm(z, axis=-1, keepdims=True)
    z[:, 0] = np.cross(z[:, 1], z[:, 2], axis=-1)
    z[:, 0] = z[:, 0] / np.linalg.norm(z[:, 0], axis=-1, keepdims=True)
    z[:, 1] = np.cross(z[:, 2], z[:, 0], axis=-1)
    z[:, 1] = z[:, 1] / np.linalg.norm(z[:, 1], axis=-1, keepdims=True)
    return z

# https://math.stackexchange.com/questions/442418/random-generation-of-rotation-matrices/4394036#4394036
# https://math.stackexchange.com/questions/44689/how-to-find-a-random-axis-or-unit-vector-in-3d/44701#44701
def randn_axis(num_samples=1, corrected=True):
    u = np.random.uniform(0, 1, size=num_samples)
    z = np.random.randn(num_samples, 1, 3)
    z = z / np.linalg.norm(z, axis=-1, keepdims=True)

    if corrected:
        t = np.linspace(0, np.pi, 1024)
        cdf_psi = (t - np.sin(t)) / np.pi
        psi = np.interp(u, cdf_psi, t, left=0, right=np.pi)
    else:
        psi = 2 * np.pi * u

    return rot3x3_from_axis_angle(z, psi)

# https://math.stackexchange.com/questions/442418/random-generation-of-rotation-matrices/442423#442423
# https://math.stackexchange.com/questions/44689/how-to-find-a-random-axis-or-unit-vector-in-3d/44691#44691
def nbubis(num_samples=1, corrected=True):
    u1 = np.random.uniform(0, 1, size=num_samples)
    u2 = np.random.uniform(0, 1, size=num_samples)
    u3 = np.random.uniform(0, 1, size=num_samples)

    theta = np.arccos(2 * u1 - 1)
    phi = 2 * np.pi * u2
    axis_vector = [
        np.sin(theta) * np.cos(phi),
        np.sin(theta) * np.sin(phi),
        np.cos(theta),
    ]
    axis_vector = np.stack(axis_vector, axis=1).reshape(-1, 1, 3)

    if corrected:
        t = np.linspace(0, np.pi, 1024)
        cdf_psi = (t - np.sin(t)) / np.pi
        psi = np.interp(u3, cdf_psi, t, left=0, right=np.pi)
    else:
        psi = 2 * np.pi * u3

    return rot3x3_from_axis_angle(axis_vector, psi)

# https://math.stackexchange.com/questions/442418/random-generation-of-rotation-matrices/1602779#1602779
def qr_half(num_samples=1):
    z = np.random.randn(num_samples, 3, 3)
    q, r = np.linalg.qr(z)
    return q

def euler_angles(num_samples=1):
    rx = np.random.rand(num_samples) * np.pi - np.pi/2
    ry = np.random.rand(num_samples) * np.pi - np.pi/2
    rz = np.random.rand(num_samples) * np.pi - np.pi/2
    # loop over all
    rotation_matrix = np.array([util.euler2mat([x,y,z]) for x, y, z in zip(rx,ry,rz)])
    return rotation_matrix

# https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Matrix_notation
def rot3x3_from_axis_angle(axis_vector, angle):
    angle = np.atleast_1d(angle)[..., None, None]
    K = np.cross(np.eye(3), axis_vector)
    return np.eye(3) + np.sin(angle) * K + (1 - np.cos(angle)) * (K @ K)

def plot_scatter(pointses, filename, kwargses):
    fig = plt.figure()
    ax = fig.add_subplot(projection="3d", computed_zorder=False)
    for points, kwargs in zip(pointses, kwargses):
        ax.scatter(*np.asarray(points).T, marker=".", **kwargs)
    ax.view_init(elev=15, azim=41, roll=0)
    ax.set(xlim=(-1, 1), ylim=(-1, 1), zlim=(-1, 1))
    ax.set_aspect("equal", adjustable="box")
    ax.set_title(filename)
    fig.savefig('ProposalNetwork/output/random_rotation/rot3x3_'+filename+'.png', dpi=300, bbox_inches="tight", pad_inches=0)
    # plt.show()
    # exit()
    plt.close(fig)

METHODS = {
    "randn_orthobasis_torch": randn_orthobasis_torch,
    "qr_full_torch": qr_full_torch,
    "euler": euler_angles,
    "randn_orthobasis": randn_orthobasis,
    "randn_axis": randn_axis,
    "randn_axis_incorrect": lambda **kwargs: randn_axis(corrected=False, **kwargs),
    "nbubis": nbubis,
    "nbubis_incorrect": lambda **kwargs: nbubis(corrected=False, **kwargs),
    "qr_half": qr_half,
    "qr_full": qr_full,
}

import time
import os
os.makedirs('ProposalNetwork/output/random_rotation',exist_ok=True)
# x is the starting point; y contains various sample rotated points.
# x = np.array([1.0, 0.0, 0.0])
x = np.array([1 / 9, -4 / 9, 8 / 9], dtype=np.float32)
x /= np.linalg.norm(x)  # Normalize to unit vector, just in case.
for name, func in METHODS.items():
    t1 = time.perf_counter()
    rot = func(num_samples=5000 // (2 if "_half" in name else 1))
    t2 = time.perf_counter()
    print(f'{name}\t\t\t Time: {t2-t1:.4f}')
    if 'torch' in name:
        y = rot @ torch.from_numpy(x)
    else:
        y = rot @ x
    plot_scatter(
        [y, [x]],
        f"{name}",
        [{"s": 1, "alpha": 0.5}, {"s": 64, "color": "#ff77cc"}],
    )