Spaces:
Sleeping
Sleeping
File size: 17,664 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import json
import time
import os
import contextlib
import io
import logging
import numpy as np
import pandas as pd
from pycocotools.coco import COCO
from collections import defaultdict
from fvcore.common.timer import Timer
from detectron2.utils.file_io import PathManager
from detectron2.structures import BoxMode
from detectron2.data import MetadataCatalog, DatasetCatalog
from cubercnn import util
VERSION = '0.1'
logger = logging.getLogger(__name__)
def get_version():
return VERSION
def get_global_dataset_stats(path_to_stats=None, reset=False):
if path_to_stats is None:
path_to_stats = os.path.join('datasets', 'Omni3D', 'stats.json')
if os.path.exists(path_to_stats) and not reset:
stats = util.load_json(path_to_stats)
else:
stats = {
'n_datasets': 0,
'n_ims': 0,
'n_anns': 0,
'categories': []
}
return stats
def save_global_dataset_stats(stats, path_to_stats=None):
if path_to_stats is None:
path_to_stats = os.path.join('datasets', 'Omni3D', 'stats.json')
util.save_json(path_to_stats, stats)
def get_filter_settings_from_cfg(cfg=None):
if cfg is None:
return {
'category_names': [],
'ignore_names': [],
'truncation_thres': 0.99,
'visibility_thres': 0.01,
'min_height_thres': 0.00,
'max_height_thres': 1.50,
'modal_2D_boxes': False,
'trunc_2D_boxes': False,
'max_depth': 1e8,
}
else:
return {
'category_names': cfg.DATASETS.CATEGORY_NAMES,
'ignore_names': cfg.DATASETS.IGNORE_NAMES,
'truncation_thres': cfg.DATASETS.TRUNCATION_THRES,
'visibility_thres': cfg.DATASETS.VISIBILITY_THRES,
'min_height_thres': cfg.DATASETS.MIN_HEIGHT_THRES,
'modal_2D_boxes': cfg.DATASETS.MODAL_2D_BOXES,
'trunc_2D_boxes': cfg.DATASETS.TRUNC_2D_BOXES,
'max_depth': cfg.DATASETS.MAX_DEPTH,
# TODO expose as a config
'max_height_thres': 1.50,
}
def is_ignore(anno, filter_settings, image_height):
ignore = anno['behind_camera']
ignore |= (not bool(anno['valid3D']))
if ignore:
return ignore
ignore |= anno['dimensions'][0] <= 0.01
ignore |= anno['dimensions'][1] <= 0.01
ignore |= anno['dimensions'][2] <= 0.01
ignore |= anno['center_cam'][2] > filter_settings['max_depth']
ignore |= (anno['lidar_pts'] == 0)
ignore |= (anno['segmentation_pts'] == 0)
ignore |= (anno['depth_error'] > 0.5)
# tightly annotated 2D boxes are not always available.
if filter_settings['modal_2D_boxes'] and 'bbox2D_tight' in anno and anno['bbox2D_tight'][0] != -1:
bbox2D = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
# truncated projected 2D boxes are also not always available.
elif filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
bbox2D = BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
# use the projected 3D --> 2D box, which requires a visible 3D cuboid.
elif 'bbox2D_proj' in anno:
bbox2D = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
bbox2D = anno['bbox']
ignore |= bbox2D[3] <= filter_settings['min_height_thres']*image_height
ignore |= bbox2D[3] >= filter_settings['max_height_thres']*image_height
ignore |= (anno['truncation'] >=0 and anno['truncation'] >= filter_settings['truncation_thres'])
ignore |= (anno['visibility'] >= 0 and anno['visibility'] <= filter_settings['visibility_thres'])
if 'ignore_names' in filter_settings:
ignore |= anno['category_name'] in filter_settings['ignore_names']
return ignore
def simple_register(dataset_name, filter_settings, filter_empty=True, datasets_root_path=None):
if datasets_root_path is None:
datasets_root_path = path_to_json = os.path.join('datasets', 'Omni3D',)
path_to_json = os.path.join(datasets_root_path, dataset_name + '.json')
path_to_image_root = 'datasets'
DatasetCatalog.register(dataset_name, lambda: load_omni3d_json(
path_to_json, path_to_image_root,
dataset_name, filter_settings, filter_empty=filter_empty
))
MetadataCatalog.get(dataset_name).set(json_file=path_to_json, image_root=path_to_image_root, evaluator_type="coco")
class Omni3D(COCO):
'''
Class for COCO-like dataset object. Not inherently related to
use with Detectron2 or training per se.
'''
def __init__(self, annotation_files, filter_settings=None):
# load dataset
self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict()
self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list)
self.idx_without_ground = set(pd.read_csv('datasets/no_ground_idx.csv')['img_id'].values)
if isinstance(annotation_files, str):
annotation_files = [annotation_files,]
cats_ids_master = []
cats_master = []
for annotation_file in annotation_files:
_, name, _ = util.file_parts(annotation_file)
logger.info('loading {} annotations into memory...'.format(name))
dataset = json.load(open(annotation_file, 'r'))
assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset))
if type(dataset['info']) == list:
dataset['info'] = dataset['info'][0]
dataset['info']['known_category_ids'] = [cat['id'] for cat in dataset['categories']]
# first dataset
if len(self.dataset) == 0:
self.dataset = dataset
# concatenate datasets
else:
if type(self.dataset['info']) == dict:
self.dataset['info'] = [self.dataset['info']]
self.dataset['info'] += [dataset['info']]
self.dataset['annotations'] += dataset['annotations']
self.dataset['images'] += dataset['images']
# sort through categories
for cat in dataset['categories']:
if not cat['id'] in cats_ids_master:
cats_ids_master.append(cat['id'])
cats_master.append(cat)
if filter_settings is None:
# include every category in the master list
self.dataset['categories'] = [
cats_master[i]
for i in np.argsort(cats_ids_master)
]
else:
# determine which categories we may actually use for filtering.
trainable_cats = set(filter_settings['ignore_names']) | set(filter_settings['category_names'])
# category names are provided to us
if len(filter_settings['category_names']) > 0:
self.dataset['categories'] = [
cats_master[i]
for i in np.argsort(cats_ids_master)
if cats_master[i]['name'] in filter_settings['category_names']
]
# no categories are provided, so assume use ALL available.
else:
self.dataset['categories'] = [
cats_master[i]
for i in np.argsort(cats_ids_master)
]
filter_settings['category_names'] = [cat['name'] for cat in self.dataset['categories']]
trainable_cats = trainable_cats | set(filter_settings['category_names'])
valid_anns = []
im_height_map = {}
for im_obj in self.dataset['images']:
im_height_map[im_obj['id']] = im_obj['height']
# Filter out annotations
for anno_idx, anno in enumerate(self.dataset['annotations']):
im_height = im_height_map[anno['image_id']]
ignore = is_ignore(anno, filter_settings, im_height)
if filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
bbox2D = BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif anno['bbox2D_proj'][0] != -1:
bbox2D = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif anno['bbox2D_tight'][0] != -1:
bbox2D = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
continue
width = bbox2D[2]
height = bbox2D[3]
self.dataset['annotations'][anno_idx]['area'] = width*height
self.dataset['annotations'][anno_idx]['iscrowd'] = False
self.dataset['annotations'][anno_idx]['ignore'] = ignore
self.dataset['annotations'][anno_idx]['ignore2D'] = ignore
self.dataset['annotations'][anno_idx]['ignore3D'] = ignore
if filter_settings['modal_2D_boxes'] and anno['bbox2D_tight'][0] != -1:
self.dataset['annotations'][anno_idx]['bbox'] = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
self.dataset['annotations'][anno_idx]['bbox'] = bbox2D
self.dataset['annotations'][anno_idx]['bbox3D'] = anno['bbox3D_cam']
self.dataset['annotations'][anno_idx]['depth'] = anno['center_cam'][2]
category_name = anno["category_name"]
# category is part of trainable categories?
if category_name in trainable_cats:
if not ignore:
valid_anns.append(self.dataset['annotations'][anno_idx])
self.dataset['annotations'] = valid_anns
# append depth image path to each image corresponding to the id
for img in self.dataset['images']:
img_id = img['id']
img['depth_image_path'] = f'datasets/depth_maps/{img_id}.npz'
if not img_id in self.idx_without_ground:
img['ground_image_path'] = f'datasets/ground_maps/{img_id}.npz'
self.createIndex()
def info(self):
infos = self.dataset['info']
if type(infos) == dict:
infos = [infos]
for i, info in enumerate(infos):
print('Dataset {}/{}'.format(i+1, infos))
for key, value in info.items():
print('{}: {}'.format(key, value))
def register_and_store_model_metadata(datasets, output_dir, filter_settings=None):
output_file = os.path.join(output_dir, 'category_meta.json')
if os.path.exists(output_file):
metadata = util.load_json(output_file)
thing_classes = metadata['thing_classes']
id_map = metadata['thing_dataset_id_to_contiguous_id']
# json saves id map as strings rather than ints
id_map = {int(idA):idB for idA, idB in id_map.items()}
else:
omni3d_stats = util.load_json(os.path.join('datasets', 'Omni3D', 'stats.json'))
thing_classes = filter_settings['category_names']
cat_ids = []
for cat in thing_classes:
cat_idx = omni3d_stats['category_names'].index(cat)
cat_id = omni3d_stats['categories'][cat_idx]['id']
cat_ids.append(cat_id)
cat_order = np.argsort(cat_ids)
cat_ids = [cat_ids[i] for i in cat_order]
thing_classes = [thing_classes[i] for i in cat_order]
id_map = {id: i for i, id in enumerate(cat_ids)}
util.save_json(output_file, {
'thing_classes': thing_classes,
'thing_dataset_id_to_contiguous_id': id_map,
})
MetadataCatalog.get('omni3d_model').thing_classes = thing_classes
MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id = id_map
def load_omni3d_json(json_file, image_root, dataset_name, filter_settings, filter_empty=True):
# read in the dataset
timer = Timer()
json_file = PathManager.get_local_path(json_file)
with contextlib.redirect_stdout(io.StringIO()):
coco_api = COCO(json_file)
ground_map_files = os.listdir('datasets/ground_maps')
ground_idx = []
for file in ground_map_files:
try:
idx = int(file.split('.')[0])
ground_idx.append(idx)
except:
pass
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
# the global meta information for the full dataset
meta_model = MetadataCatalog.get('omni3d_model')
# load the meta information
meta = MetadataCatalog.get(dataset_name)
cat_ids = sorted(coco_api.getCatIds(filter_settings['category_names']))
cats = coco_api.loadCats(cat_ids)
thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
meta.thing_classes = thing_classes
# the id mapping must be based on the model!
id_map = meta_model.thing_dataset_id_to_contiguous_id
meta.thing_dataset_id_to_contiguous_id = id_map
# sort indices for reproducible results
img_ids = sorted(coco_api.imgs.keys())
imgs = coco_api.loadImgs(img_ids)
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
total_num_valid_anns = sum([len(x) for x in anns])
total_num_anns = len(coco_api.anns)
if total_num_valid_anns < total_num_anns:
logger.info(
f"{json_file} contains {total_num_anns} annotations, but only "
f"{total_num_valid_anns} of them match to images in the file."
)
imgs_anns = list(zip(imgs, anns))
logger.info("Loaded {} images in Omni3D format from {}".format(len(imgs_anns), json_file))
dataset_dicts = []
# annotation keys to pass along
ann_keys = [
"bbox", "bbox3D_cam", "bbox2D_proj", "bbox2D_trunc", "bbox2D_tight",
"center_cam", "dimensions", "pose", "R_cam", "category_id",
]
# optional per image keys to pass if exists
# this property is unique to KITTI.
img_keys_optional = ['p2']
invalid_count = 0
for img_dict, anno_dict_list in imgs_anns:
has_valid_annotation = False
record = {}
record["file_name"] = os.path.join(image_root, img_dict["file_path"])
record["dataset_id"] = img_dict["dataset_id"]
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
record["K"] = img_dict["K"]
# store optional keys when available
for img_key in img_keys_optional:
if img_key in img_dict:
record[img_key] = img_dict[img_key]
image_id = record["image_id"] = img_dict["id"]
record["depth_image_path"] = f'datasets/depth_maps/{image_id}.npz'
if image_id in ground_idx:
record["ground_image_path"] = f'datasets/ground_maps/{image_id}.npz'
objs = []
# where invalid annotations are removed
for anno in anno_dict_list:
assert anno["image_id"] == image_id
obj = {key: anno[key] for key in ann_keys if key in anno}
obj["bbox_mode"] = BoxMode.XYWH_ABS
annotation_category_id = obj["category_id"]
# category is not part of ids and is not in the ignore category?
if not (annotation_category_id in id_map) and not (anno['category_name'] in filter_settings['ignore_names']):
continue
ignore = is_ignore(anno, filter_settings, img_dict["height"])
obj['iscrowd'] = False
obj['ignore'] = ignore
if filter_settings['modal_2D_boxes'] and 'bbox2D_tight' in anno and anno['bbox2D_tight'][0] != -1:
obj['bbox'] = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
obj['bbox'] = BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif 'bbox2D_proj' in anno:
obj['bbox'] = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
continue
obj['pose'] = anno['R_cam']
# store category as -1 for ignores!
# OLD Logic
# obj["category_id"] = -1 if ignore else id_map[annotation_category_id]
if filter_empty:
obj["category_id"] = id_map[annotation_category_id]
if not ignore:
objs.append(obj)
else:
obj["category_id"] = -1 if ignore else id_map[annotation_category_id]
has_valid_annotation |= (not ignore)
if has_valid_annotation or (not filter_empty):
record["annotations"] = objs
dataset_dicts.append(record)
else:
invalid_count += 1
logger.info("Filtered out {}/{} images without valid annotations".format(invalid_count, len(imgs_anns)))
return dataset_dicts |