File size: 17,664 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# Copyright (c) Meta Platforms, Inc. and affiliates
import json
import time
import os
import contextlib
import io
import logging
import numpy as np
import pandas as pd
from pycocotools.coco import COCO
from collections import defaultdict
from fvcore.common.timer import Timer
from detectron2.utils.file_io import PathManager
from detectron2.structures import BoxMode
from detectron2.data import MetadataCatalog, DatasetCatalog

from cubercnn import util

VERSION = '0.1'

logger = logging.getLogger(__name__)

def get_version():
    return VERSION

def get_global_dataset_stats(path_to_stats=None, reset=False):

    if path_to_stats is None:
        path_to_stats = os.path.join('datasets', 'Omni3D', 'stats.json')

    if os.path.exists(path_to_stats) and not reset:
        stats = util.load_json(path_to_stats)
    
    else:
        stats = {
            'n_datasets': 0,
            'n_ims': 0,
            'n_anns': 0,
            'categories': []
        }

    return stats


def save_global_dataset_stats(stats, path_to_stats=None):

    if path_to_stats is None:
        path_to_stats = os.path.join('datasets', 'Omni3D', 'stats.json')

    util.save_json(path_to_stats, stats)


def get_filter_settings_from_cfg(cfg=None):

    if cfg is None:
        return {
            'category_names': [], 
            'ignore_names': [], 
            'truncation_thres': 0.99, 
            'visibility_thres': 0.01,
            'min_height_thres': 0.00,
            'max_height_thres': 1.50,
            'modal_2D_boxes': False,
            'trunc_2D_boxes': False,
            'max_depth': 1e8,
        }
    else:
        return {
            'category_names': cfg.DATASETS.CATEGORY_NAMES, 
            'ignore_names': cfg.DATASETS.IGNORE_NAMES, 
            'truncation_thres': cfg.DATASETS.TRUNCATION_THRES, 
            'visibility_thres': cfg.DATASETS.VISIBILITY_THRES,
            'min_height_thres': cfg.DATASETS.MIN_HEIGHT_THRES,
            'modal_2D_boxes': cfg.DATASETS.MODAL_2D_BOXES,
            'trunc_2D_boxes': cfg.DATASETS.TRUNC_2D_BOXES,
            'max_depth': cfg.DATASETS.MAX_DEPTH,
            
            # TODO expose as a config
            'max_height_thres': 1.50,
        }


def is_ignore(anno, filter_settings, image_height):

    ignore = anno['behind_camera'] 
    ignore |= (not bool(anno['valid3D']))

    if ignore:
        return ignore

    ignore |= anno['dimensions'][0] <= 0.01
    ignore |= anno['dimensions'][1] <= 0.01
    ignore |= anno['dimensions'][2] <= 0.01
    ignore |= anno['center_cam'][2] > filter_settings['max_depth']
    ignore |= (anno['lidar_pts'] == 0)
    ignore |= (anno['segmentation_pts'] == 0)
    ignore |= (anno['depth_error'] > 0.5)
    
    # tightly annotated 2D boxes are not always available.
    if filter_settings['modal_2D_boxes'] and 'bbox2D_tight' in anno and anno['bbox2D_tight'][0] != -1:
        bbox2D =  BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

    # truncated projected 2D boxes are also not always available.
    elif filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
        bbox2D =  BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

    # use the projected 3D --> 2D box, which requires a visible 3D cuboid.
    elif 'bbox2D_proj' in anno:
        bbox2D =  BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

    else:
        bbox2D = anno['bbox']

    ignore |= bbox2D[3] <= filter_settings['min_height_thres']*image_height
    ignore |= bbox2D[3] >= filter_settings['max_height_thres']*image_height
        
    ignore |= (anno['truncation'] >=0 and anno['truncation'] >= filter_settings['truncation_thres'])
    ignore |= (anno['visibility'] >= 0 and anno['visibility'] <= filter_settings['visibility_thres'])
    
    if 'ignore_names' in filter_settings:
        ignore |= anno['category_name'] in filter_settings['ignore_names']

    return ignore


def simple_register(dataset_name, filter_settings, filter_empty=True, datasets_root_path=None):

    if datasets_root_path is None:
        datasets_root_path = path_to_json = os.path.join('datasets', 'Omni3D',)
    
    path_to_json = os.path.join(datasets_root_path, dataset_name + '.json')
    path_to_image_root = 'datasets'

    DatasetCatalog.register(dataset_name, lambda: load_omni3d_json(
        path_to_json, path_to_image_root, 
        dataset_name, filter_settings, filter_empty=filter_empty
    ))

    MetadataCatalog.get(dataset_name).set(json_file=path_to_json, image_root=path_to_image_root, evaluator_type="coco")

class Omni3D(COCO):
    '''
    Class for COCO-like dataset object. Not inherently related to 
    use with Detectron2 or training per se. 
    '''

    def __init__(self, annotation_files, filter_settings=None):
             
        # load dataset
        self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict()
        self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list)

        self.idx_without_ground = set(pd.read_csv('datasets/no_ground_idx.csv')['img_id'].values)
       
        if isinstance(annotation_files, str):
            annotation_files = [annotation_files,]
        
        cats_ids_master = []
        cats_master = []
        
        for annotation_file in annotation_files:

            _, name, _ = util.file_parts(annotation_file)

            logger.info('loading {} annotations into memory...'.format(name))
            dataset = json.load(open(annotation_file, 'r'))
            assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset))

            if type(dataset['info']) == list:
                dataset['info'] = dataset['info'][0]
                
            dataset['info']['known_category_ids'] = [cat['id'] for cat in dataset['categories']]

            # first dataset
            if len(self.dataset) == 0:
                self.dataset = dataset
            
            # concatenate datasets
            else:

                if type(self.dataset['info']) == dict:
                    self.dataset['info'] = [self.dataset['info']]
                    
                self.dataset['info'] += [dataset['info']]
                self.dataset['annotations'] += dataset['annotations']
                self.dataset['images'] += dataset['images']
            
            # sort through categories
            for cat in dataset['categories']:

                if not cat['id'] in cats_ids_master:
                    cats_ids_master.append(cat['id'])
                    cats_master.append(cat)

        if filter_settings is None:

            # include every category in the master list
            self.dataset['categories'] = [
                cats_master[i] 
                for i in np.argsort(cats_ids_master) 
            ]
            
        else:
        
            # determine which categories we may actually use for filtering.
            trainable_cats = set(filter_settings['ignore_names']) | set(filter_settings['category_names'])

            # category names are provided to us
            if len(filter_settings['category_names']) > 0:

                self.dataset['categories'] = [
                    cats_master[i] 
                    for i in np.argsort(cats_ids_master) 
                    if cats_master[i]['name'] in filter_settings['category_names']
                ]
            
            # no categories are provided, so assume use ALL available.
            else:

                self.dataset['categories'] = [
                    cats_master[i] 
                    for i in np.argsort(cats_ids_master) 
                ]

                filter_settings['category_names'] = [cat['name'] for cat in self.dataset['categories']]

                trainable_cats = trainable_cats | set(filter_settings['category_names'])
            
            valid_anns = []
            im_height_map = {}

            for im_obj in self.dataset['images']:
                im_height_map[im_obj['id']] = im_obj['height']

            # Filter out annotations
            for anno_idx, anno in enumerate(self.dataset['annotations']):
                
                im_height = im_height_map[anno['image_id']]

                ignore = is_ignore(anno, filter_settings, im_height)
                
                if filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
                    bbox2D =  BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

                elif anno['bbox2D_proj'][0] != -1:
                    bbox2D = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

                elif anno['bbox2D_tight'][0] != -1:
                    bbox2D = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

                else: 
                    continue

                width = bbox2D[2]
                height = bbox2D[3]

                self.dataset['annotations'][anno_idx]['area'] = width*height
                self.dataset['annotations'][anno_idx]['iscrowd'] = False
                self.dataset['annotations'][anno_idx]['ignore'] = ignore
                self.dataset['annotations'][anno_idx]['ignore2D'] = ignore
                self.dataset['annotations'][anno_idx]['ignore3D'] = ignore
                
                if filter_settings['modal_2D_boxes'] and anno['bbox2D_tight'][0] != -1:
                    self.dataset['annotations'][anno_idx]['bbox'] = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
                
                else:
                    self.dataset['annotations'][anno_idx]['bbox'] = bbox2D
                
                self.dataset['annotations'][anno_idx]['bbox3D'] = anno['bbox3D_cam']
                self.dataset['annotations'][anno_idx]['depth'] = anno['center_cam'][2]

                category_name = anno["category_name"]

                # category is part of trainable categories?
                if category_name in trainable_cats:
                    if not ignore:
                        valid_anns.append(self.dataset['annotations'][anno_idx])

            self.dataset['annotations'] = valid_anns

            # append depth image path to each image corresponding to the id
            for img in self.dataset['images']:
                img_id = img['id']
                img['depth_image_path'] = f'datasets/depth_maps/{img_id}.npz'
                if not img_id in self.idx_without_ground:
                    img['ground_image_path'] = f'datasets/ground_maps/{img_id}.npz'

        self.createIndex()

    def info(self):
        
        infos = self.dataset['info']
        if type(infos) == dict:
            infos = [infos]

        for i, info in enumerate(infos):
            print('Dataset {}/{}'.format(i+1, infos))

            for key, value in info.items():
                print('{}: {}'.format(key, value))


def register_and_store_model_metadata(datasets, output_dir, filter_settings=None):

    output_file = os.path.join(output_dir, 'category_meta.json')

    if os.path.exists(output_file):
        metadata = util.load_json(output_file)
        thing_classes = metadata['thing_classes']
        id_map = metadata['thing_dataset_id_to_contiguous_id']

        # json saves id map as strings rather than ints
        id_map = {int(idA):idB for idA, idB in id_map.items()}

    else:
        omni3d_stats = util.load_json(os.path.join('datasets', 'Omni3D', 'stats.json'))
        thing_classes = filter_settings['category_names']

        cat_ids = []
        for cat in thing_classes:
            cat_idx = omni3d_stats['category_names'].index(cat)
            cat_id = omni3d_stats['categories'][cat_idx]['id']
            cat_ids.append(cat_id)

        cat_order = np.argsort(cat_ids)
        cat_ids = [cat_ids[i] for i in cat_order]
        thing_classes = [thing_classes[i] for i in cat_order]
        id_map = {id: i for i, id in enumerate(cat_ids)}
        
        util.save_json(output_file, {
            'thing_classes': thing_classes,
            'thing_dataset_id_to_contiguous_id': id_map,
        })

    MetadataCatalog.get('omni3d_model').thing_classes = thing_classes
    MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id  = id_map


def load_omni3d_json(json_file, image_root, dataset_name, filter_settings, filter_empty=True):
    
    # read in the dataset
    timer = Timer()
    json_file = PathManager.get_local_path(json_file)
    with contextlib.redirect_stdout(io.StringIO()):
        coco_api = COCO(json_file)
    ground_map_files = os.listdir('datasets/ground_maps')
    ground_idx = []
    for file in ground_map_files:
        try:
            idx = int(file.split('.')[0])
            ground_idx.append(idx)
        except:
            pass
    if timer.seconds() > 1:
        logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))

    # the global meta information for the full dataset
    meta_model = MetadataCatalog.get('omni3d_model')

    # load the meta information
    meta = MetadataCatalog.get(dataset_name)
    cat_ids = sorted(coco_api.getCatIds(filter_settings['category_names']))
    cats = coco_api.loadCats(cat_ids)
    thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
    meta.thing_classes = thing_classes
    
    # the id mapping must be based on the model!
    id_map = meta_model.thing_dataset_id_to_contiguous_id
    meta.thing_dataset_id_to_contiguous_id = id_map

    # sort indices for reproducible results
    img_ids = sorted(coco_api.imgs.keys())
    imgs = coco_api.loadImgs(img_ids)
    anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
    total_num_valid_anns = sum([len(x) for x in anns])
    total_num_anns = len(coco_api.anns)
    if total_num_valid_anns < total_num_anns:
        logger.info(
            f"{json_file} contains {total_num_anns} annotations, but only "
            f"{total_num_valid_anns} of them match to images in the file."
        )

    imgs_anns = list(zip(imgs, anns))
    logger.info("Loaded {} images in Omni3D format from {}".format(len(imgs_anns), json_file))

    dataset_dicts = []

    # annotation keys to pass along
    ann_keys = [
        "bbox", "bbox3D_cam", "bbox2D_proj", "bbox2D_trunc", "bbox2D_tight", 
        "center_cam", "dimensions", "pose", "R_cam", "category_id",
    ]
    
    # optional per image keys to pass if exists
    # this property is unique to KITTI. 
    img_keys_optional = ['p2']

    invalid_count = 0
    
    for img_dict, anno_dict_list in imgs_anns:
        
        has_valid_annotation = False

        record = {}
        record["file_name"] = os.path.join(image_root, img_dict["file_path"])
        record["dataset_id"] = img_dict["dataset_id"]
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        record["K"] = img_dict["K"]

        # store optional keys when available
        for img_key in img_keys_optional:
            if img_key in img_dict:
                record[img_key] = img_dict[img_key]

        image_id = record["image_id"] = img_dict["id"]

        record["depth_image_path"] = f'datasets/depth_maps/{image_id}.npz'
        if image_id in ground_idx:
            record["ground_image_path"] = f'datasets/ground_maps/{image_id}.npz'
        objs = []
        # where invalid annotations are removed
        for anno in anno_dict_list:
            assert anno["image_id"] == image_id

            obj = {key: anno[key] for key in ann_keys if key in anno}

            obj["bbox_mode"] = BoxMode.XYWH_ABS
            annotation_category_id = obj["category_id"]

            # category is not part of ids and is not in the ignore category?
            if not (annotation_category_id in id_map) and not (anno['category_name'] in filter_settings['ignore_names']):
                continue

            ignore = is_ignore(anno, filter_settings, img_dict["height"])
            
            obj['iscrowd'] = False
            obj['ignore'] = ignore
            
            if filter_settings['modal_2D_boxes'] and 'bbox2D_tight' in anno and anno['bbox2D_tight'][0] != -1:
                obj['bbox'] = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

            elif filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
                obj['bbox'] =  BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

            elif 'bbox2D_proj' in anno:
                obj['bbox'] = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

            else:
                continue

            obj['pose'] = anno['R_cam']

            # store category as -1 for ignores!
            # OLD Logic
            # obj["category_id"] = -1 if ignore else id_map[annotation_category_id]
            if filter_empty:
                obj["category_id"] = id_map[annotation_category_id]
                if not ignore:
                    objs.append(obj)
            else:
                obj["category_id"] = -1 if ignore else id_map[annotation_category_id]

            has_valid_annotation |= (not ignore)

        if has_valid_annotation or (not filter_empty):
            record["annotations"] = objs
            dataset_dicts.append(record)
            
        else:
            invalid_count += 1 
    
    logger.info("Filtered out {}/{} images without valid annotations".format(invalid_count, len(imgs_anns)))

    return dataset_dicts