Spaces:
Sleeping
Sleeping
File size: 65,076 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import contextlib
import copy
import datetime
import io
import itertools
import json
import logging
import os
import time
from collections import defaultdict
from typing import List, Union
from typing import Tuple
import numpy as np
import pycocotools.mask as maskUtils
import torch
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.evaluation.coco_evaluation import COCOEvaluator
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import create_small_table, log_every_n_seconds
from pycocotools.cocoeval import COCOeval
from tabulate import tabulate
from detectron2.utils.comm import get_world_size, is_main_process
import detectron2.utils.comm as comm
from detectron2.evaluation import (
DatasetEvaluators, inference_context, DatasetEvaluator
)
from collections import OrderedDict, abc
from contextlib import ExitStack, contextmanager
from torch import nn
import logging
from cubercnn.data import Omni3D
from pytorch3d import _C
import torch.nn.functional as F
from pytorch3d.ops.iou_box3d import _box_planes, _box_triangles
import cubercnn.vis.logperf as utils_logperf
from cubercnn.data import (
get_omni3d_categories,
simple_register
)
"""
This file contains
* Omni3DEvaluationHelper: a helper object to accumulate and summarize evaluation results
* Omni3DEval: a wrapper around COCOeval to perform 3D bounding evaluation in the detection setting
* Omni3DEvaluator: a wrapper around COCOEvaluator to collect results on each dataset
* Omni3DParams: parameters for the evaluation API
"""
logger = logging.getLogger(__name__)
# Defines the max cross of len(dts) * len(gts)
# which we will attempt to compute on a GPU.
# Fallback is safer computation on a CPU.
# 0 is disabled on GPU.
MAX_DTS_CROSS_GTS_FOR_IOU3D = 0
def _check_coplanar(boxes: torch.Tensor, eps: float = 1e-4) -> torch.BoolTensor:
"""
Checks that plane vertices are coplanar.
Returns a bool tensor of size B, where True indicates a box is coplanar.
"""
faces = torch.tensor(_box_planes, dtype=torch.int64, device=boxes.device)
verts = boxes.index_select(index=faces.view(-1), dim=1)
B = boxes.shape[0]
P, V = faces.shape
# (B, P, 4, 3) -> (B, P, 3)
v0, v1, v2, v3 = verts.reshape(B, P, V, 3).unbind(2)
# Compute the normal
e0 = F.normalize(v1 - v0, dim=-1)
e1 = F.normalize(v2 - v0, dim=-1)
normal = F.normalize(torch.cross(e0, e1, dim=-1), dim=-1)
# Check the fourth vertex is also on the same plane
mat1 = (v3 - v0).view(B, 1, -1) # (B, 1, P*3)
mat2 = normal.view(B, -1, 1) # (B, P*3, 1)
return (mat1.bmm(mat2).abs() < eps).view(B)
def _check_nonzero(boxes: torch.Tensor, eps: float = 1e-8) -> torch.BoolTensor:
"""
Checks that the sides of the box have a non zero area.
Returns a bool tensor of size B, where True indicates a box is nonzero.
"""
faces = torch.tensor(_box_triangles, dtype=torch.int64, device=boxes.device)
verts = boxes.index_select(index=faces.view(-1), dim=1)
B = boxes.shape[0]
T, V = faces.shape
# (B, T, 3, 3) -> (B, T, 3)
v0, v1, v2 = verts.reshape(B, T, V, 3).unbind(2)
normals = torch.cross(v1 - v0, v2 - v0, dim=-1) # (B, T, 3)
face_areas = normals.norm(dim=-1) / 2
return (face_areas > eps).all(1).view(B)
def box3d_overlap(
boxes_dt: torch.Tensor, boxes_gt: torch.Tensor,
eps_coplanar: float = 1e-4, eps_nonzero: float = 1e-8
) -> torch.Tensor:
"""
Computes the intersection of 3D boxes_dt and boxes_gt.
Inputs boxes_dt, boxes_gt are tensors of shape (B, 8, 3)
(where B doesn't have to be the same for boxes_dt and boxes_gt),
containing the 8 corners of the boxes, as follows:
(4) +---------+. (5)
| ` . | ` .
| (0) +---+-----+ (1)
| | | |
(7) +-----+---+. (6)|
` . | ` . |
(3) ` +---------+ (2)
NOTE: Throughout this implementation, we assume that boxes
are defined by their 8 corners exactly in the order specified in the
diagram above for the function to give correct results. In addition
the vertices on each plane must be coplanar.
As an alternative to the diagram, this is a unit bounding
box which has the correct vertex ordering:
box_corner_vertices = [
[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 1],
[1, 1, 1],
[0, 1, 1],
]
Args:
boxes_dt: tensor of shape (N, 8, 3) of the coordinates of the 1st boxes
boxes_gt: tensor of shape (M, 8, 3) of the coordinates of the 2nd boxes
Returns:
iou: (N, M) tensor of the intersection over union which is
defined as: `iou = vol / (vol1 + vol2 - vol)`
"""
# Make sure predictions are coplanar and nonzero
invalid_coplanar = ~_check_coplanar(boxes_dt, eps=eps_coplanar)
invalid_nonzero = ~_check_nonzero(boxes_dt, eps=eps_nonzero)
ious = _C.iou_box3d(boxes_dt, boxes_gt)[1]
# Offending boxes are set to zero IoU
if invalid_coplanar.any():
ious[invalid_coplanar] = 0
print('Warning: skipping {:d} non-coplanar boxes at eval.'.format(int(invalid_coplanar.float().sum())))
if invalid_nonzero.any():
ious[invalid_nonzero] = 0
print('Warning: skipping {:d} zero volume boxes at eval.'.format(int(invalid_nonzero.float().sum())))
return ious
class Omni3DEvaluationHelper:
def __init__(self,
dataset_names,
filter_settings,
output_folder,
iter_label='-',
only_2d=False,
):
"""
A helper class to initialize, evaluate and summarize Omni3D metrics.
The evaluator relies on the detectron2 MetadataCatalog for keeping track
of category names and contiguous IDs. Hence, it is important to set
these variables appropriately.
# (list[str]) the category names in their contiguous order
MetadataCatalog.get('omni3d_model').thing_classes = ...
# (dict[int: int]) the mapping from Omni3D category IDs to the contiguous order
MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
Args:
dataset_names (list[str]): the individual dataset splits for evaluation
filter_settings (dict): the filter settings used for evaluation, see
cubercnn/data/datasets.py get_filter_settings_from_cfg
output_folder (str): the output folder where results can be stored to disk.
iter_label (str): an optional iteration/label used within the summary
only_2d (bool): whether the evaluation mode should be 2D or 2D and 3D.
"""
self.dataset_names = dataset_names
self.filter_settings = filter_settings
self.output_folder = output_folder
self.iter_label = iter_label
self.only_2d = only_2d
# Each dataset evaluator is stored here
self.evaluators = OrderedDict()
# These are the main evaluation results
self.results = OrderedDict()
# These store store per-dataset results to be printed
self.results_analysis = OrderedDict()
self.results_omni3d = OrderedDict()
self.overall_imgIds = set()
self.overall_catIds = set()
# These store the evaluations for each category and area,
# concatenated from ALL evaluated datasets. Doing so avoids
# the need to re-compute them when accumulating results.
self.evals_per_cat_area2D = {}
self.evals_per_cat_area3D = {}
self.output_folders = {
dataset_name: os.path.join(self.output_folder, dataset_name)
for dataset_name in dataset_names
}
for dataset_name in self.dataset_names:
# register any datasets that need it
if MetadataCatalog.get(dataset_name).get('json_file') is None:
simple_register(dataset_name, filter_settings, filter_empty=False)
# create an individual dataset evaluator
self.evaluators[dataset_name] = Omni3DEvaluator(
dataset_name, output_dir=self.output_folders[dataset_name],
filter_settings=self.filter_settings, only_2d=self.only_2d,
eval_prox=('Objectron' in dataset_name or 'SUNRGBD' in dataset_name),
distributed=False, # actual evaluation should be single process
)
self.evaluators[dataset_name].reset()
self.overall_imgIds.update(set(self.evaluators[dataset_name]._omni_api.getImgIds()))
self.overall_catIds.update(set(self.evaluators[dataset_name]._omni_api.getCatIds()))
def add_predictions(self, dataset_name, predictions):
"""
Adds predictions to the evaluator for dataset_name. This can be any number of
predictions, including all predictions passed in at once or in batches.
Args:
dataset_name (str): the dataset split name which the predictions belong to
predictions (list[dict]): each item in the list is a dict as follows:
{
"image_id": <int> the unique image identifier from Omni3D,
"K": <np.array> 3x3 intrinsics matrix for the image,
"width": <int> image width,
"height": <int> image height,
"instances": [
{
"image_id": <int> the unique image identifier from Omni3D,
"category_id": <int> the contiguous category prediction IDs,
which can be mapped from Omni3D's category ID's using
MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
"bbox": [float] 2D box as [x1, y1, x2, y2] used for IoU2D,
"score": <float> the confidence score for the object,
"depth": <float> the depth of the center of the object,
"bbox3D": list[list[float]] 8x3 corner vertices used for IoU3D,
}
...
]
}
"""
# concatenate incoming predictions
self.evaluators[dataset_name]._predictions += predictions
def save_predictions(self, dataset_name):
"""
Saves the predictions from dataset_name to disk, in a self.output_folder.
Args:
dataset_name (str): the dataset split name which should be saved.
"""
# save predictions to disk
output_folder_dataset = self.output_folders[dataset_name]
PathManager.mkdirs(output_folder_dataset)
file_path = os.path.join(output_folder_dataset, "instances_predictions.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(self.evaluators[dataset_name]._predictions, f)
def evaluate(self, dataset_name):
"""
Runs the evaluation for an individual dataset split, assuming all
predictions have been passed in.
Args:
dataset_name (str): the dataset split name which should be evalated.
"""
if not dataset_name in self.results:
# run evaluation and cache
self.results[dataset_name] = self.evaluators[dataset_name].evaluate()
results = self.results[dataset_name]
logger.info('\n'+results['log_str_2D'].replace('mode=2D', '{} iter={} mode=2D'.format(dataset_name, self.iter_label)))
# store the partially accumulated evaluations per category per area
for key, item in results['bbox_2D_evals_per_cat_area'].items():
if not key in self.evals_per_cat_area2D:
self.evals_per_cat_area2D[key] = []
self.evals_per_cat_area2D[key] += item
if not self.only_2d:
# store the partially accumulated evaluations per category per area
for key, item in results['bbox_3D_evals_per_cat_area'].items():
if not key in self.evals_per_cat_area3D:
self.evals_per_cat_area3D[key] = []
self.evals_per_cat_area3D[key] += item
logger.info('\n'+results['log_str_3D'].replace('mode=3D', '{} iter={} mode=3D'.format(dataset_name, self.iter_label)))
# full model category names
category_names = self.filter_settings['category_names']
# The set of categories present in the dataset; there should be no duplicates
categories = {cat for cat in category_names if 'AP-{}'.format(cat) in results['bbox_2D']}
assert len(categories) == len(set(categories))
# default are all NaN
general_2D, general_3D, omni_2D, omni_3D = (np.nan,) * 4
# 2D and 3D performance for categories in dataset; and log
general_2D = np.mean([results['bbox_2D']['AP-{}'.format(cat)] for cat in categories])
if not self.only_2d:
general_3D = np.mean([results['bbox_3D']['AP-{}'.format(cat)] for cat in categories])
# 2D and 3D performance on Omni3D categories
omni3d_dataset_categories = get_omni3d_categories(dataset_name) # dataset-specific categories
if len(omni3d_dataset_categories - categories) == 0: # omni3d_dataset_categories is a subset of categories
omni_2D = np.mean([results['bbox_2D']['AP-{}'.format(cat)] for cat in omni3d_dataset_categories])
if not self.only_2d:
omni_3D = np.mean([results['bbox_3D']['AP-{}'.format(cat)] for cat in omni3d_dataset_categories])
self.results_omni3d[dataset_name] = {"iters": self.iter_label, "AP2D": omni_2D, "AP3D": omni_3D}
# Performance analysis
extras_AP15, extras_AP25, extras_AP50, extras_APn, extras_APm, extras_APf = (np.nan,)*6
if not self.only_2d:
extras_AP15 = results['bbox_3D']['AP15']
extras_AP25 = results['bbox_3D']['AP25']
extras_AP50 = results['bbox_3D']['AP50']
extras_APn = results['bbox_3D']['APn']
extras_APm = results['bbox_3D']['APm']
extras_APf = results['bbox_3D']['APf']
self.results_analysis[dataset_name] = {
"iters": self.iter_label,
"AP2D": general_2D, "AP3D": general_3D,
"AP3D@15": extras_AP15, "AP3D@25": extras_AP25, "AP3D@50": extras_AP50,
"AP3D-N": extras_APn, "AP3D-M": extras_APm, "AP3D-F": extras_APf
}
# Performance per category
results_cat = OrderedDict()
for cat in category_names:
cat_2D, cat_3D = (np.nan,) * 2
if 'AP-{}'.format(cat) in results['bbox_2D']:
cat_2D = results['bbox_2D']['AP-{}'.format(cat)]
if not self.only_2d:
cat_3D = results['bbox_3D']['AP-{}'.format(cat)]
if not np.isnan(cat_2D) or not np.isnan(cat_3D):
results_cat[cat] = {"AP2D": cat_2D, "AP3D": cat_3D}
utils_logperf.print_ap_category_histogram(dataset_name, results_cat)
def summarize_all(self,):
'''
Report collective metrics when possible for the the Omni3D dataset.
This uses pre-computed evaluation results from each dataset,
which were aggregated and cached while evaluating individually.
This process simply re-accumulate and summarizes them.
'''
# First, double check that we have all the evaluations
for dataset_name in self.dataset_names:
if not dataset_name in self.results:
self.evaluate(dataset_name)
thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
catId2contiguous = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
ordered_things = [thing_classes[catId2contiguous[cid]] for cid in self.overall_catIds]
categories = set(ordered_things)
evaluator2D = Omni3Deval(mode='2D')
evaluator2D.params.catIds = list(self.overall_catIds)
evaluator2D.params.imgIds = list(self.overall_imgIds)
evaluator2D.evalImgs = True
evaluator2D.evals_per_cat_area = self.evals_per_cat_area2D
evaluator2D._paramsEval = copy.deepcopy(evaluator2D.params)
evaluator2D.accumulate()
summarize_str2D = evaluator2D.summarize()
precisions = evaluator2D.eval['precision']
metrics = ["AP", "AP50", "AP75", "AP95", "APs", "APm", "APl"]
results2D = {
metric: float(
evaluator2D.stats[idx] * 100 if evaluator2D.stats[idx] >= 0 else "nan"
)
for idx, metric in enumerate(metrics)
}
for idx, name in enumerate(ordered_things):
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
results2D.update({"AP-" + "{}".format(name): float(ap * 100)})
evaluator3D = Omni3Deval(mode='3D')
evaluator3D.params.catIds = list(self.overall_catIds)
evaluator3D.params.imgIds = list(self.overall_imgIds)
evaluator3D.evalImgs = True
evaluator3D.evals_per_cat_area = self.evals_per_cat_area3D
evaluator3D._paramsEval = copy.deepcopy(evaluator3D.params)
evaluator3D.accumulate()
summarize_str3D = evaluator3D.summarize()
precisions = evaluator3D.eval['precision']
metrics = ["AP", "AP15", "AP25", "AP50", "APn", "APm", "APf"]
results3D = {
metric: float(
evaluator3D.stats[idx] * 100 if evaluator3D.stats[idx] >= 0 else "nan"
)
for idx, metric in enumerate(metrics)
}
for idx, name in enumerate(ordered_things):
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
results3D.update({"AP-" + "{}".format(name): float(ap * 100)})
# All concat categories
general_2D, general_3D = (np.nan,) * 2
general_2D = np.mean([results2D['AP-{}'.format(cat)] for cat in categories])
if not self.only_2d:
general_3D = np.mean([results3D['AP-{}'.format(cat)] for cat in categories])
# Analysis performance
extras_AP15, extras_AP25, extras_AP50, extras_APn, extras_APm, extras_APf = (np.nan,) * 6
if not self.only_2d:
extras_AP15 = results3D['AP15']
extras_AP25 = results3D['AP25']
extras_AP50 = results3D['AP50']
extras_APn = results3D['APn']
extras_APm = results3D['APm']
extras_APf = results3D['APf']
self.results_analysis["<Concat>"] = {
"iters": self.iter_label,
"AP2D": general_2D, "AP3D": general_3D,
"AP3D@15": extras_AP15, "AP3D@25": extras_AP25, "AP3D@50": extras_AP50,
"AP3D-N": extras_APn, "AP3D-M": extras_APm, "AP3D-F": extras_APf
}
# Omni3D Outdoor performance
omni_2D, omni_3D = (np.nan,) * 2
omni3d_outdoor_categories = get_omni3d_categories("omni3d_out")
if len(omni3d_outdoor_categories - categories) == 0:
omni_2D = np.mean([results2D['AP-{}'.format(cat)] for cat in omni3d_outdoor_categories])
if not self.only_2d:
omni_3D = np.mean([results3D['AP-{}'.format(cat)] for cat in omni3d_outdoor_categories])
self.results_omni3d["Omni3D_Out"] = {"iters": self.iter_label, "AP2D": omni_2D, "AP3D": omni_3D}
# Omni3D Indoor performance
omni_2D, omni_3D = (np.nan,) * 2
omni3d_indoor_categories = get_omni3d_categories("omni3d_in")
if len(omni3d_indoor_categories - categories) == 0:
omni_2D = np.mean([results2D['AP-{}'.format(cat)] for cat in omni3d_indoor_categories])
if not self.only_2d:
omni_3D = np.mean([results3D['AP-{}'.format(cat)] for cat in omni3d_indoor_categories])
self.results_omni3d["Omni3D_In"] = {"iters": self.iter_label, "AP2D": omni_2D, "AP3D": omni_3D}
# Omni3D performance
omni_2D, omni_3D = (np.nan,) * 2
omni3d_categories = get_omni3d_categories("omni3d")
if len(omni3d_categories - categories) == 0:
omni_2D = np.mean([results2D['AP-{}'.format(cat)] for cat in omni3d_categories])
if not self.only_2d:
omni_3D = np.mean([results3D['AP-{}'.format(cat)] for cat in omni3d_categories])
self.results_omni3d["Omni3D"] = {"iters": self.iter_label, "AP2D": omni_2D, "AP3D": omni_3D}
# Per-category performance for the cumulative datasets
results_cat = OrderedDict()
for cat in self.filter_settings['category_names']:
cat_2D, cat_3D = (np.nan,) * 2
if 'AP-{}'.format(cat) in results2D:
cat_2D = results2D['AP-{}'.format(cat)]
if not self.only_2d:
cat_3D = results3D['AP-{}'.format(cat)]
if not np.isnan(cat_2D) or not np.isnan(cat_3D):
results_cat[cat] = {"AP2D": cat_2D, "AP3D": cat_3D}
utils_logperf.print_ap_category_histogram("<Concat>", results_cat)
utils_logperf.print_ap_analysis_histogram(self.results_analysis)
utils_logperf.print_ap_omni_histogram(self.results_omni3d)
def inference_on_dataset(model, data_loader):
"""
Run model on the data_loader.
Also benchmark the inference speed of `model.__call__` accurately.
The model will be used in eval mode.
Args:
model (callable): a callable which takes an object from
`data_loader` and returns some outputs.
If it's an nn.Module, it will be temporarily set to `eval` mode.
If you wish to evaluate a model in `training` mode instead, you can
wrap the given model and override its behavior of `.eval()` and `.train()`.
data_loader: an iterable object with a length.
The elements it generates will be the inputs to the model.
Returns:
The return value of `evaluator.evaluate()`
"""
num_devices = get_world_size()
distributed = num_devices > 1
logger.info("Start inference on {} batches".format(len(data_loader)))
total = len(data_loader) # inference data loader must have a fixed length
num_warmup = min(5, total - 1)
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
inference_json = []
with ExitStack() as stack:
if isinstance(model, nn.Module):
stack.enter_context(inference_context(model))
stack.enter_context(torch.no_grad())
start_data_time = time.perf_counter()
for idx, inputs in enumerate(data_loader):
total_data_time += time.perf_counter() - start_data_time
if idx == num_warmup:
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_compute_time = time.perf_counter()
outputs = model(inputs)
if torch.cuda.is_available():
torch.cuda.synchronize()
total_compute_time += time.perf_counter() - start_compute_time
start_eval_time = time.perf_counter()
for input, output in zip(inputs, outputs):
prediction = {
"image_id": input["image_id"],
"K": input["K"],
"width": input["width"],
"height": input["height"],
}
# convert to json format
instances = output["instances"].to('cpu')
prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
# store in overall predictions
inference_json.append(prediction)
total_eval_time += time.perf_counter() - start_eval_time
iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
data_seconds_per_iter = total_data_time / iters_after_start
compute_seconds_per_iter = total_compute_time / iters_after_start
eval_seconds_per_iter = total_eval_time / iters_after_start
total_seconds_per_iter = (time.perf_counter() - start_time) / iters_after_start
if idx >= num_warmup * 2 or compute_seconds_per_iter > 5:
eta = datetime.timedelta(seconds=int(total_seconds_per_iter * (total - idx - 1)))
log_every_n_seconds(
logging.INFO,
(
f"Inference done {idx + 1}/{total}. "
f"Dataloading: {data_seconds_per_iter:.4f} s/iter. "
f"Inference: {compute_seconds_per_iter:.4f} s/iter. "
f"Eval: {eval_seconds_per_iter:.4f} s/iter. "
f"Total: {total_seconds_per_iter:.4f} s/iter. "
f"ETA={eta}"
),
n=5,
)
start_data_time = time.perf_counter()
# Measure the time only for this worker (before the synchronization barrier)
total_time = time.perf_counter() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
# NOTE this format is parsed by grep
logger.info(
"Total inference time: {} ({:.6f} s / iter per device, on {} devices)".format(
total_time_str, total_time / (total - num_warmup), num_devices
)
)
total_compute_time_str = str(datetime.timedelta(seconds=int(total_compute_time)))
logger.info(
"Total inference pure compute time: {} ({:.6f} s / iter per device, on {} devices)".format(
total_compute_time_str, total_compute_time / (total - num_warmup), num_devices
)
)
if distributed:
comm.synchronize()
inference_json = comm.gather(inference_json, dst=0)
inference_json = list(itertools.chain(*inference_json))
if not comm.is_main_process():
return []
return inference_json
class Omni3DEvaluator(COCOEvaluator):
def __init__(
self,
dataset_name,
tasks=None,
distributed=True,
output_dir=None,
*,
max_dets_per_image=None,
use_fast_impl=False,
eval_prox=False,
only_2d=False,
filter_settings={},
):
"""
Args:
dataset_name (str): name of the dataset to be evaluated.
It must have either the following corresponding metadata:
"json_file": the path to the COCO format annotation
Or it must be in detectron2's standard dataset format
so it can be converted to COCO format automatically.
tasks (tuple[str]): tasks that can be evaluated under the given
configuration. For now, support only for "bbox".
distributed (True): if True, will collect results from all ranks and run evaluation
in the main process.
Otherwise, will only evaluate the results in the current process.
output_dir (str): optional, an output directory to dump all
results predicted on the dataset. The dump contains two files:
1. "instances_predictions.pth" a file that can be loaded with `torch.load` and
contains all the results in the format they are produced by the model.
2. "coco_instances_results.json" a json file in COCO's result format.
max_dets_per_image (int): limit on the maximum number of detections per image.
By default in COCO, this limit is to 100, but this can be customized
to be greater, as is needed in evaluation metrics AP fixed and AP pool
(see https://arxiv.org/pdf/2102.01066.pdf)
This doesn't affect keypoint evaluation.
use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP.
Although the results should be very close to the official implementation in COCO
API, it is still recommended to compute results with the official API for use in
papers. The faster implementation also uses more RAM.
eval_prox (bool): whether to perform proximity evaluation. For datasets that are not
exhaustively annotated.
only_2d (bool): evaluates only 2D performance if set to True
filter_settions: settings for the dataset loader. TBD
"""
self._logger = logging.getLogger(__name__)
self._distributed = distributed
self._output_dir = output_dir
self._use_fast_impl = use_fast_impl
self._eval_prox = eval_prox
self._only_2d = only_2d
self._filter_settings = filter_settings
# COCOeval requires the limit on the number of detections per image (maxDets) to be a list
# with at least 3 elements. The default maxDets in COCOeval is [1, 10, 100], in which the
# 3rd element (100) is used as the limit on the number of detections per image when
# evaluating AP. COCOEvaluator expects an integer for max_dets_per_image, so for COCOeval,
# we reformat max_dets_per_image into [1, 10, max_dets_per_image], based on the defaults.
if max_dets_per_image is None:
max_dets_per_image = [1, 10, 100]
else:
max_dets_per_image = [1, 10, max_dets_per_image]
self._max_dets_per_image = max_dets_per_image
self._tasks = tasks
self._cpu_device = torch.device("cpu")
self._metadata = MetadataCatalog.get(dataset_name)
json_file = PathManager.get_local_path(self._metadata.json_file)
with contextlib.redirect_stdout(io.StringIO()):
self._omni_api = Omni3D([json_file], filter_settings)
# Test set json files do not contain annotations (evaluation must be
# performed using the COCO evaluation server).
self._do_evaluation = "annotations" in self._omni_api.dataset
def process(self, inputs, outputs):
"""
Args:
inputs: the inputs to a model (e.g., GeneralizedRCNN).
It is a list of dict. Each dict corresponds to an image and
contains keys like "height", "width", "file_name", "image_id".
outputs: the outputs of a model. It is a list of dicts with key
"instances" that contains :class:`Instances`.
"""
# Optional image keys to keep when available
img_keys_optional = ["p2"]
for input, output in zip(inputs, outputs):
prediction = {
"image_id": input["image_id"],
"K": input["K"],
"width": input["width"],
"height": input["height"],
}
# store optional keys when available
for img_key in img_keys_optional:
if img_key in input:
prediction.update({img_key: input[img_key]})
# already in COCO format
if type(output["instances"]) == list:
prediction["instances"] = output["instances"]
# tensor instances format
else:
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(
instances, input["image_id"]
)
if len(prediction) > 1:
self._predictions.append(prediction)
def _derive_omni_results(self, omni_eval, iou_type, mode, class_names=None):
"""
Derive the desired score numbers from summarized COCOeval.
Args:
omni_eval (None or Omni3Deval): None represents no predictions from model.
iou_type (str):
mode (str): either "2D" or "3D"
class_names (None or list[str]): if provided, will use it to predict
per-category AP.
Returns:
a dict of {metric name: score}
"""
assert mode in ["2D", "3D"]
metrics = {
"2D": ["AP", "AP50", "AP75", "AP95", "APs", "APm", "APl"],
"3D": ["AP", "AP15", "AP25", "AP50", "APn", "APm", "APf"],
}[mode]
if iou_type != "bbox":
raise ValueError("Support only for bbox evaluation.")
if omni_eval is None:
self._logger.warn("No predictions from the model!")
return {metric: float("nan") for metric in metrics}
# the standard metrics
results = {
metric: float(
omni_eval.stats[idx] * 100 if omni_eval.stats[idx] >= 0 else "nan"
)
for idx, metric in enumerate(metrics)
}
self._logger.info(
"Evaluation results for {} in {} mode: \n".format(iou_type, mode)
+ create_small_table(results)
)
if not np.isfinite(sum(results.values())):
self._logger.info("Some metrics cannot be computed and is shown as NaN.")
if class_names is None or len(class_names) <= 1:
return results
# Compute per-category AP
# from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa
precisions = omni_eval.eval["precision"]
# precision has dims (iou, recall, cls, area range, max dets)
assert len(class_names) == precisions.shape[2]
results_per_category = []
for idx, name in enumerate(class_names):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
results_per_category.append(("{}".format(name), float(ap * 100)))
# tabulate it
N_COLS = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
results_table = itertools.zip_longest(
*[results_flatten[i::N_COLS] for i in range(N_COLS)]
)
table = tabulate(
results_table,
tablefmt="pipe",
floatfmt=".3f",
headers=["category", "AP"] * (N_COLS // 2),
numalign="left",
)
self._logger.info(
"Per-category {} AP in {} mode: \n".format(iou_type, mode) + table
)
results.update({"AP-" + name: ap for name, ap in results_per_category})
return results
def _eval_predictions(self, predictions, img_ids=None):
"""
Evaluate predictions. Fill self._results with the metrics of the tasks.
"""
self._logger.info("Preparing results for COCO format ...")
omni_results = list(itertools.chain(*[x["instances"] for x in predictions]))
tasks = self._tasks or self._tasks_from_predictions(omni_results)
omni3d_global_categories = MetadataCatalog.get('omni3d_model').thing_classes
# the dataset results will store only the categories that are present
# in the corresponding dataset, all others will be dropped.
dataset_results = []
# unmap the category ids for COCO
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
dataset_id_to_contiguous_id = (
self._metadata.thing_dataset_id_to_contiguous_id
)
all_contiguous_ids = list(dataset_id_to_contiguous_id.values())
num_classes = len(all_contiguous_ids)
assert (
min(all_contiguous_ids) == 0
and max(all_contiguous_ids) == num_classes - 1
)
reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()}
for result in omni_results:
category_id = result["category_id"]
assert category_id < num_classes, (
f"A prediction has class={category_id}, "
f"but the dataset only has {num_classes} classes and "
f"predicted class id should be in [0, {num_classes - 1}]."
)
result["category_id"] = reverse_id_mapping[category_id]
cat_name = omni3d_global_categories[category_id]
if cat_name in self._metadata.thing_classes:
dataset_results.append(result)
# replace the results with the filtered
# instances that are in vocabulary.
omni_results = dataset_results
if self._output_dir:
file_path = os.path.join(self._output_dir, "omni_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(omni_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info(
"Evaluating predictions with {} COCO API...".format(
"unofficial" if self._use_fast_impl else "official"
)
)
for task in sorted(tasks):
assert task in {"bbox"}, f"Got unknown task: {task}!"
evals, log_strs = (
_evaluate_predictions_on_omni(
self._omni_api,
omni_results,
task,
img_ids=img_ids,
only_2d=self._only_2d,
eval_prox=self._eval_prox,
)
if len(omni_results) > 0
else None # cocoapi does not handle empty results very well
)
modes = evals.keys()
for mode in modes:
res = self._derive_omni_results(
evals[mode],
task,
mode,
class_names=self._metadata.get("thing_classes"),
)
self._results[task + "_" + format(mode)] = res
self._results[task + "_" + format(mode) + '_evalImgs'] = evals[mode].evalImgs
self._results[task + "_" + format(mode) + '_evals_per_cat_area'] = evals[mode].evals_per_cat_area
self._results["log_str_2D"] = log_strs["2D"]
if "3D" in log_strs:
self._results["log_str_3D"] = log_strs["3D"]
def _evaluate_predictions_on_omni(
omni_gt,
omni_results,
iou_type,
img_ids=None,
only_2d=False,
eval_prox=False,
):
"""
Evaluate the coco results using COCOEval API.
"""
assert len(omni_results) > 0
log_strs, evals = {}, {}
omni_dt = omni_gt.loadRes(omni_results)
modes = ["2D"] if only_2d else ["2D", "3D"]
for mode in modes:
omni_eval = Omni3Deval(
omni_gt, omni_dt, iouType=iou_type, mode=mode, eval_prox=eval_prox
)
if img_ids is not None:
omni_eval.params.imgIds = img_ids
omni_eval.evaluate()
omni_eval.accumulate()
log_str = omni_eval.summarize()
log_strs[mode] = log_str
evals[mode] = omni_eval
return evals, log_strs
def instances_to_coco_json(instances, img_id):
num_instances = len(instances)
if num_instances == 0:
return []
boxes = BoxMode.convert(
instances.pred_boxes.tensor.numpy(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS
).tolist()
scores = instances.scores.tolist()
classes = instances.pred_classes.tolist()
if hasattr(instances, "pred_bbox3D"):
bbox3D = instances.pred_bbox3D.tolist()
center_cam = instances.pred_center_cam.tolist()
center_2D = instances.pred_center_2D.tolist()
dimensions = instances.pred_dimensions.tolist()
pose = instances.pred_pose.tolist()
else:
# dummy
bbox3D = np.ones([num_instances, 8, 3]).tolist()
center_cam = np.ones([num_instances, 3]).tolist()
center_2D = np.ones([num_instances, 2]).tolist()
dimensions = np.ones([num_instances, 3]).tolist()
pose = np.ones([num_instances, 3, 3]).tolist()
results = []
for k in range(num_instances):
result = {
"image_id": img_id,
"category_id": classes[k],
"bbox": boxes[k],
"score": scores[k],
"depth": np.array(bbox3D[k])[:, 2].mean(),
"bbox3D": bbox3D[k],
"center_cam": center_cam[k],
"center_2D": center_2D[k],
"dimensions": dimensions[k],
"pose": pose[k],
}
results.append(result)
return results
# ---------------------------------------------------------------------
# Omni3DParams
# ---------------------------------------------------------------------
class Omni3DParams:
"""
Params for the Omni evaluation API
"""
def setDet2DParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(
0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True
)
self.recThrs = np.linspace(
0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True
)
self.maxDets = [1, 10, 100]
self.areaRng = [
[0 ** 2, 1e5 ** 2],
[0 ** 2, 32 ** 2],
[32 ** 2, 96 ** 2],
[96 ** 2, 1e5 ** 2],
]
self.areaRngLbl = ["all", "small", "medium", "large"]
self.useCats = 1
def setDet3DParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(
0.05, 0.5, int(np.round((0.5 - 0.05) / 0.05)) + 1, endpoint=True
)
self.recThrs = np.linspace(
0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True
)
self.maxDets = [1, 10, 100]
self.areaRng = [[0, 1e5], [0, 10], [10, 35], [35, 1e5]]
self.areaRngLbl = ["all", "near", "medium", "far"]
self.useCats = 1
def __init__(self, mode="2D"):
"""
Args:
iouType (str): defines 2D or 3D evaluation parameters.
One of {"2D", "3D"}
"""
if mode == "2D":
self.setDet2DParams()
elif mode == "3D":
self.setDet3DParams()
else:
raise Exception("mode %s not supported" % (mode))
self.iouType = "bbox"
self.mode = mode
# the proximity threshold defines the neighborhood
# when evaluating on non-exhaustively annotated datasets
self.proximity_thresh = 0.3
# ---------------------------------------------------------------------
# Omni3Deval
# ---------------------------------------------------------------------
class Omni3Deval(COCOeval):
"""
Wraps COCOeval for 2D or 3D box evaluation depending on mode
"""
def __init__(
self, cocoGt=None, cocoDt=None, iouType="bbox", mode="2D", eval_prox=False
):
"""
Initialize COCOeval using coco APIs for Gt and Dt
Args:
cocoGt: COCO object with ground truth annotations
cocoDt: COCO object with detection results
iouType: (str) defines the evaluation type. Supports only "bbox" now.
mode: (str) defines whether to evaluate 2D or 3D performance.
One of {"2D", "3D"}
eval_prox: (bool) if True, performs "Proximity Evaluation", i.e.
evaluates detections in the proximity of the ground truth2D boxes.
This is used for datasets which are not exhaustively annotated.
"""
if not iouType:
print("iouType not specified. use default iouType bbox")
elif iouType != "bbox":
print("no support for %s iouType" % (iouType))
self.mode = mode
if mode not in ["2D", "3D"]:
raise Exception("mode %s not supported" % (mode))
self.eval_prox = eval_prox
self.cocoGt = cocoGt # ground truth COCO API
self.cocoDt = cocoDt # detections COCO API
# per-image per-category evaluation results [KxAxI] elements
self.evalImgs = defaultdict(list)
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Omni3DParams(mode) # parameters
self._paramsEval = {} # parameters for evaluation
self.stats = [] # result summarization
self.ious = {} # ious between all gts and dts
if cocoGt is not None:
self.params.imgIds = sorted(cocoGt.getImgIds())
self.params.catIds = sorted(cocoGt.getCatIds())
self.evals_per_cat_area = None
def _prepare(self):
"""
Prepare ._gts and ._dts for evaluation based on params
"""
p = self.params
if p.useCats:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
else:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
# set ignore flag
ignore_flag = "ignore2D" if self.mode == "2D" else "ignore3D"
for gt in gts:
gt[ignore_flag] = gt[ignore_flag] if ignore_flag in gt else 0
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
for gt in gts:
self._gts[gt["image_id"], gt["category_id"]].append(gt)
for dt in dts:
self._dts[dt["image_id"], dt["category_id"]].append(dt)
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def accumulate(self, p = None):
'''
Accumulate per image evaluation results and store the result in self.eval
:param p: input params for evaluation
:return: None
'''
print('Accumulating evaluation results...')
assert self.evalImgs, 'Please run evaluate() first'
tic = time.time()
# allows input customized parameters
if p is None:
p = self.params
p.catIds = p.catIds if p.useCats == 1 else [-1]
T = len(p.iouThrs)
R = len(p.recThrs)
K = len(p.catIds) if p.useCats else 1
A = len(p.areaRng)
M = len(p.maxDets)
precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories
recall = -np.ones((T,K,A,M))
scores = -np.ones((T,R,K,A,M))
# create dictionary for future indexing
_pe = self._paramsEval
catIds = _pe.catIds if _pe.useCats else [-1]
setK = set(catIds)
setA = set(map(tuple, _pe.areaRng))
setM = set(_pe.maxDets)
setI = set(_pe.imgIds)
# get inds to evaluate
catid_list = [k for n, k in enumerate(p.catIds) if k in setK]
k_list = [n for n, k in enumerate(p.catIds) if k in setK]
m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
I0 = len(_pe.imgIds)
A0 = len(_pe.areaRng)
has_precomputed_evals = not (self.evals_per_cat_area is None)
if has_precomputed_evals:
evals_per_cat_area = self.evals_per_cat_area
else:
evals_per_cat_area = {}
# retrieve E at each category, area range, and max number of detections
for k, (k0, catId) in enumerate(zip(k_list, catid_list)):
Nk = k0*A0*I0
for a, a0 in enumerate(a_list):
Na = a0*I0
if has_precomputed_evals:
E = evals_per_cat_area[(catId, a)]
else:
E = [self.evalImgs[Nk + Na + i] for i in i_list]
E = [e for e in E if not e is None]
evals_per_cat_area[(catId, a)] = E
if len(E) == 0:
continue
for m, maxDet in enumerate(m_list):
dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
# different sorting method generates slightly different results.
# mergesort is used to be consistent as Matlab implementation.
inds = np.argsort(-dtScores, kind='mergesort')
dtScoresSorted = dtScores[inds]
dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds]
dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds]
gtIg = np.concatenate([e['gtIgnore'] for e in E])
npig = np.count_nonzero(gtIg==0)
if npig == 0:
continue
tps = np.logical_and( dtm, np.logical_not(dtIg) )
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) )
tp_sum = np.cumsum(tps, axis=1).astype(dtype=float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=float)
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
nd = len(tp)
rc = tp / npig
pr = tp / (fp+tp+np.spacing(1))
q = np.zeros((R,))
ss = np.zeros((R,))
if nd:
recall[t,k,a,m] = rc[-1]
else:
recall[t,k,a,m] = 0
# numpy is slow without cython optimization for accessing elements
# use python array gets significant speed improvement
pr = pr.tolist(); q = q.tolist()
for i in range(nd-1, 0, -1):
if pr[i] > pr[i-1]:
pr[i-1] = pr[i]
inds = np.searchsorted(rc, p.recThrs, side='left')
try:
for ri, pi in enumerate(inds):
q[ri] = pr[pi]
ss[ri] = dtScoresSorted[pi]
except:
pass
precision[t,:,k,a,m] = np.array(q)
scores[t,:,k,a,m] = np.array(ss)
self.evals_per_cat_area = evals_per_cat_area
self.eval = {
'params': p,
'counts': [T, R, K, A, M],
'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'precision': precision,
'recall': recall,
'scores': scores,
}
toc = time.time()
print('DONE (t={:0.2f}s).'.format( toc-tic))
def evaluate(self):
"""
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
"""
print("Running per image evaluation...")
p = self.params
print("Evaluate annotation type *{}*".format(p.iouType))
tic = time.time()
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
catIds = p.catIds if p.useCats else [-1]
# loop through images, area range, max detection number
self.ious = {
(imgId, catId): self.computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds
}
maxDet = p.maxDets[-1]
self.evalImgs = [
self.evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
print("DONE (t={:0.2f}s).".format(toc - tic))
def computeIoU(self, imgId, catId):
"""
ComputeIoU computes the IoUs by sorting based on "score"
for either 2D boxes (in 2D mode) or 3D boxes (in 3D mode)
"""
device = (torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu"))
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0 : p.maxDets[-1]]
if p.iouType == "bbox":
if self.mode == "2D":
g = [g["bbox"] for g in gt]
d = [d["bbox"] for d in dt]
elif self.mode == "3D":
g = [g["bbox3D"] for g in gt]
d = [d["bbox3D"] for d in dt]
else:
raise Exception("unknown iouType for iou computation")
# compute iou between each dt and gt region
# iscrowd is required in builtin maskUtils so we
# use a dummy buffer for it
iscrowd = [0 for o in gt]
if self.mode == "2D":
ious = maskUtils.iou(d, g, iscrowd)
elif len(d) > 0 and len(g) > 0:
# For 3D eval, we want to run IoU in CUDA if available
if torch.cuda.is_available() and len(d) * len(g) < MAX_DTS_CROSS_GTS_FOR_IOU3D:
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
dd = torch.tensor(d, device=device, dtype=torch.float32)
gg = torch.tensor(g, device=device, dtype=torch.float32)
ious = box3d_overlap(dd, gg).cpu().numpy()
else:
ious = []
in_prox = None
if self.eval_prox:
g = [g["bbox"] for g in gt]
d = [d["bbox"] for d in dt]
iscrowd = [0 for o in gt]
ious2d = maskUtils.iou(d, g, iscrowd)
if type(ious2d) == list:
in_prox = []
else:
in_prox = ious2d > p.proximity_thresh
return ious, in_prox
def evaluateImg(self, imgId, catId, aRng, maxDet):
"""
Perform evaluation for single category and image
Returns:
dict (single image results)
"""
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return None
flag_range = "area" if self.mode == "2D" else "depth"
flag_ignore = "ignore2D" if self.mode == "2D" else "ignore3D"
for g in gt:
if g[flag_ignore] or (g[flag_range] < aRng[0] or g[flag_range] > aRng[1]):
g["_ignore"] = 1
else:
g["_ignore"] = 0
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in dtind[0:maxDet]]
# load computed ious
ious = (
self.ious[imgId, catId][0][:, gtind]
if len(self.ious[imgId, catId][0]) > 0
else self.ious[imgId, catId][0]
)
if self.eval_prox:
in_prox = (
self.ious[imgId, catId][1][:, gtind]
if len(self.ious[imgId, catId][1]) > 0
else self.ious[imgId, catId][1]
)
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
gtm = np.zeros((T, G))
dtm = np.zeros((T, D))
gtIg = np.array([g["_ignore"] for g in gt])
dtIg = np.zeros((T, D))
if not len(ious) == 0:
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t, 1 - 1e-10])
m = -1
for gind, g in enumerate(gt):
# in case of proximity evaluation, if not in proximity continue
if self.eval_prox and not in_prox[dind, gind]:
continue
# if this gt already matched, continue
if gtm[tind, gind] > 0:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1:
break
# continue to next gt unless better match made
if ious[dind, gind] < iou:
continue
# if match successful and best so far, store appropriately
iou = ious[dind, gind]
m = gind
# if match made store id of match for both dt and gt
if m == -1:
continue
dtIg[tind, dind] = gtIg[m]
dtm[tind, dind] = gt[m]["id"]
gtm[tind, m] = d["id"]
# set unmatched detections outside of area range to ignore
a = np.array(
[d[flag_range] < aRng[0] or d[flag_range] > aRng[1] for d in dt]
).reshape((1, len(dt)))
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0)))
# in case of proximity evaluation, ignore detections which are far from gt regions
if self.eval_prox and len(in_prox) > 0:
dt_far = in_prox.any(1) == 0
dtIg = np.logical_or(dtIg, np.repeat(dt_far.reshape((1, len(dt))), T, 0))
# store results for given image and category
return {
"image_id": imgId,
"category_id": catId,
"aRng": aRng,
"maxDet": maxDet,
"dtIds": [d["id"] for d in dt],
"gtIds": [g["id"] for g in gt],
"dtMatches": dtm,
"gtMatches": gtm,
"dtScores": [d["score"] for d in dt],
"gtIgnore": gtIg,
"dtIgnore": dtIg,
}
def summarize(self):
"""
Compute and display summary metrics for evaluation results.
Note this functin can *only* be applied on the default parameter setting
"""
def _summarize(mode, ap=1, iouThr=None, areaRng="all", maxDets=100, log_str=""):
p = self.params
eval = self.eval
if mode == "2D":
iStr = (" {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}")
elif mode == "3D":
iStr = " {:<18} {} @[ IoU={:<9} | depth={:>6s} | maxDets={:>3d} ] = {:0.3f}"
titleStr = "Average Precision" if ap == 1 else "Average Recall"
typeStr = "(AP)" if ap == 1 else "(AR)"
iouStr = (
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
if iouThr is None
else "{:0.2f}".format(iouThr)
)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = eval["precision"]
# IoU
if iouThr is not None:
t = np.where(np.isclose(iouThr, p.iouThrs.astype(float)))[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = eval["recall"]
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
if log_str != "":
log_str += "\n"
log_str += "mode={} ".format(mode) + \
iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)
return mean_s, log_str
def _summarizeDets(mode):
params = self.params
# the thresholds here, define the thresholds printed in `derive_omni_results`
thres = [0.5, 0.75, 0.95] if mode == "2D" else [0.15, 0.25, 0.50]
stats = np.zeros((13,))
stats[0], log_str = _summarize(mode, 1)
stats[1], log_str = _summarize(
mode, 1, iouThr=thres[0], maxDets=params.maxDets[2], log_str=log_str
)
stats[2], log_str = _summarize(
mode, 1, iouThr=thres[1], maxDets=params.maxDets[2], log_str=log_str
)
stats[3], log_str = _summarize(
mode, 1, iouThr=thres[2], maxDets=params.maxDets[2], log_str=log_str
)
stats[4], log_str = _summarize(
mode,
1,
areaRng=params.areaRngLbl[1],
maxDets=params.maxDets[2],
log_str=log_str,
)
stats[5], log_str = _summarize(
mode,
1,
areaRng=params.areaRngLbl[2],
maxDets=params.maxDets[2],
log_str=log_str,
)
stats[6], log_str = _summarize(
mode,
1,
areaRng=params.areaRngLbl[3],
maxDets=params.maxDets[2],
log_str=log_str,
)
stats[7], log_str = _summarize(
mode, 0, maxDets=params.maxDets[0], log_str=log_str
)
stats[8], log_str = _summarize(
mode, 0, maxDets=params.maxDets[1], log_str=log_str
)
stats[9], log_str = _summarize(
mode, 0, maxDets=params.maxDets[2], log_str=log_str
)
stats[10], log_str = _summarize(
mode,
0,
areaRng=params.areaRngLbl[1],
maxDets=params.maxDets[2],
log_str=log_str,
)
stats[11], log_str = _summarize(
mode,
0,
areaRng=params.areaRngLbl[2],
maxDets=params.maxDets[2],
log_str=log_str,
)
stats[12], log_str = _summarize(
mode,
0,
areaRng=params.areaRngLbl[3],
maxDets=params.maxDets[2],
log_str=log_str,
)
return stats, log_str
if not self.eval:
raise Exception("Please run accumulate() first")
stats, log_str = _summarizeDets(self.mode)
self.stats = stats
return log_str
|