Spaces:
Sleeping
Sleeping
File size: 42,234 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import logging
from typing import Dict, List, Optional
from detectron2.layers import move_device_like
from detectron2.structures.image_list import ImageList
import torch
import numpy as np
from detectron2.layers import ShapeSpec, batched_nms
from detectron2.utils.visualizer import Visualizer
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.structures import Instances
from detectron2.utils.events import get_event_storage
from detectron2.data import MetadataCatalog
from detectron2.modeling.backbone import Backbone, BACKBONE_REGISTRY
from detectron2.modeling.proposal_generator import build_proposal_generator
from detectron2.utils.logger import _log_api_usage
from detectron2.modeling.meta_arch import (
META_ARCH_REGISTRY, GeneralizedRCNN
)
from cubercnn.data.generate_depth_maps import setup_depth_model
from cubercnn.modeling.roi_heads import build_roi_heads
from detectron2.data import MetadataCatalog
from cubercnn.modeling.roi_heads import build_roi_heads
from cubercnn import util, vis
import torch.nn.functional as F
from detectron2.config import configurable
import torch.nn as nn
logger = logging.getLogger(__name__)
@META_ARCH_REGISTRY.register()
class RCNN3D(GeneralizedRCNN):
@classmethod
def from_config(cls, cfg, priors=None):
backbone = build_backbone(cfg, priors=priors)
return {
"backbone": backbone,
"proposal_generator": build_proposal_generator(cfg, backbone.output_shape()),
"roi_heads": build_roi_heads(cfg, backbone.output_shape(), priors=priors),
"input_format": cfg.INPUT.FORMAT,
"vis_period": cfg.VIS_PERIOD,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
}
def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
if not self.training:
return self.inference(batched_inputs)
images = self.preprocess_image(batched_inputs)
# scaling factor for the sample relative to its original scale
# e.g., how much has the image been upsampled by? or downsampled?
im_scales_ratio = [info['height'] / im.shape[1] for (info, im) in zip(batched_inputs, images)]
# The unmodified intrinsics for the image
Ks = [torch.FloatTensor(info['K']) for info in batched_inputs]
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
else:
gt_instances = None
# the backbone is actually a FPN, where the DLA model is the bottom-up structure.
# FPN: https://arxiv.org/abs/1612.03144v2
# backbone and proposal generator only work on 2D images and annotations.
features = self.backbone(images.tensor)
proposals, proposal_losses = self.proposal_generator(images, features, gt_instances)
instances, detector_losses = self.roi_heads(
images, features, proposals,
Ks, im_scales_ratio,
gt_instances
)
if self.vis_period > 0:
storage = get_event_storage()
if storage.iter % self.vis_period == 0 and storage.iter > 0:
self.visualize_training(batched_inputs, proposals, instances)
losses = {}
losses.update(detector_losses)
losses.update(proposal_losses)
return losses
def inference(
self,
batched_inputs: List[Dict[str, torch.Tensor]],
detected_instances: Optional[List[Instances]] = None,
do_postprocess: bool = True,
):
assert not self.training
images = self.preprocess_image(batched_inputs)
# scaling factor for the sample relative to its original scale
# e.g., how much has the image been upsampled by? or downsampled?
im_scales_ratio = [info['height'] / im.shape[1] for (info, im) in zip(batched_inputs, images)]
# The unmodified intrinsics for the image
Ks = [torch.FloatTensor(info['K']) for info in batched_inputs]
features = self.backbone(images.tensor)
# Pass oracle 2D boxes into the RoI heads
if type(batched_inputs == list) and np.any(['oracle2D' in b for b in batched_inputs]):
oracles = [b['oracle2D'] for b in batched_inputs]
results, _ = self.roi_heads(images, features, oracles, Ks, im_scales_ratio, None)
# normal inference
else:
proposals, _ = self.proposal_generator(images, features, None)
results, _ = self.roi_heads(images, features, proposals, Ks, im_scales_ratio, None)
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes)
else:
return results
def visualize_training(self, batched_inputs, proposals, instances):
"""
A function used to visualize images and proposals. It shows ground truth
bounding boxes on the original image and up to 20 top-scoring predicted
object proposals on the original image. Users can implement different
visualization functions for different models.
Args:
batched_inputs (list): a list that contains input to the model.
proposals (list): a list that contains predicted proposals. Both
batched_inputs and proposals should have the same length.
instances (list): a list that contains predicted RoIhead instances. Both
batched_inputs and proposals should have the same length.
"""
storage = get_event_storage()
# minimum number of boxes to try to visualize per image
max_vis_prop = 20
if not hasattr(self, 'thing_classes'):
self.thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
self.num_classes = len(self.thing_classes)
for input, prop, instances_i in zip(batched_inputs, proposals, instances):
img = input["image"]
img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format)
img_3DGT = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
img_3DPR = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
'''
Visualize the 2D GT and proposal predictions
'''
v_gt = Visualizer(img, None)
v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes)
anno_img = v_gt.get_image()
box_size = min(len(prop.proposal_boxes), max_vis_prop)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
)
prop_img = v_pred.get_image()
vis_img_rpn = np.concatenate((anno_img, prop_img), axis=1)
vis_img_rpn = vis_img_rpn.transpose(2, 0, 1)
storage.put_image("Left: GT 2D bounding boxes; Right: Predicted 2D proposals", vis_img_rpn)
'''
Visualize the 3D GT and predictions
'''
K = torch.tensor(input['K'], device=self.device)
scale = input['height']/img.shape[0]
fx, sx = (val.item()/scale for val in K[0, [0, 2]])
fy, sy = (val.item()/scale for val in K[1, [1, 2]])
K_scaled = torch.tensor(
[[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]],
dtype=torch.float32, device=self.device
) @ K
gts_per_image = input["instances"]
gt_classes = gts_per_image.gt_classes
# Filter out irrelevant groundtruth
fg_selection_mask = (gt_classes != -1) & (gt_classes < self.num_classes)
gt_classes = gt_classes[fg_selection_mask]
gt_class_names = [self.thing_classes[cls_idx] for cls_idx in gt_classes]
gt_boxes = gts_per_image.gt_boxes.tensor[fg_selection_mask] # 2D boxes
gt_poses = gts_per_image.gt_poses[fg_selection_mask] # GT poses
# projected 2D center, depth, w, h, l, 3D center
gt_boxes3D = gts_per_image.gt_boxes3D[fg_selection_mask]
# this box may have been mirrored and scaled so
# we need to recompute XYZ in 3D by backprojecting.
gt_z = gt_boxes3D[:, 2]
gt_x3D = gt_z * (gt_boxes3D[:, 0] - sx)/fx
gt_y3D = gt_z * (gt_boxes3D[:, 1] - sy)/fy
# put together the GT boxes
gt_center_3D = torch.stack((gt_x3D, gt_y3D, gt_z)).T
gt_boxes3D_XYZ_WHL = torch.cat((gt_center_3D, gt_boxes3D[:, 3:6]), dim=1)
gt_colors = torch.tensor(
[util.get_color(i) for i in range(len(gt_boxes3D_XYZ_WHL))],
device=self.device
)/255.0
gt_meshes = util.mesh_cuboid(gt_boxes3D_XYZ_WHL, gt_poses, gt_colors)
# perform a simple NMS, which is not cls dependent.
keep = batched_nms(
instances_i.pred_boxes.tensor,
instances_i.scores,
torch.zeros(len(instances_i.scores), dtype=torch.long, device=instances_i.scores.device),
self.roi_heads.box_predictor.test_nms_thresh
)
keep = keep[:max_vis_prop]
num_to_visualize = len(keep)
pred_xyzwhl = torch.cat((instances_i.pred_center_cam[keep], instances_i.pred_dimensions[keep]), dim=1)
pred_pose = instances_i.pred_pose[keep]
pred_colors = torch.tensor(
[util.get_color(i) for i in range(num_to_visualize)],
device=self.device
)/255.0
pred_boxes = instances_i.pred_boxes[keep]
pred_scores = instances_i.scores[keep]
pred_classes = instances_i.pred_classes[keep]
pred_class_names = ['{} {:.2f}'.format(self.thing_classes[cls_idx], score) for cls_idx, score in zip(pred_classes, pred_scores)]
pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors)
# convert to lists
pred_meshes = [pred_meshes.__getitem__(i).detach() for i in range(len(pred_meshes))]
gt_meshes = [gt_meshes.__getitem__(i) for i in range(len(gt_meshes))]
img_3DPR = vis.draw_scene_view(img_3DPR, K_scaled.cpu().numpy(), pred_meshes, text=pred_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
img_3DGT = vis.draw_scene_view(img_3DGT, K_scaled.cpu().numpy(), gt_meshes, text=gt_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
# horizontal stack 3D GT and pred left/right
vis_img_3d = np.concatenate((img_3DGT, img_3DPR), axis=1)
vis_img_3d = vis_img_3d[:, :, [2, 1, 0]] # RGB
vis_img_3d = vis_img_3d.astype(np.uint8).transpose(2, 0, 1)
storage.put_image("Left: GT 3D cuboids; Right: Predicted 3D cuboids", vis_img_3d)
break # only visualize one image in a batch
@META_ARCH_REGISTRY.register()
class RCNN3D_combined_features(nn.Module):
@configurable
def __init__(self, *, backbone, proposal_generator, roi_heads, input_format, vis_period, pixel_mean, pixel_std, depth_model):
super().__init__()
self.backbone = backbone
self.proposal_generator = proposal_generator
self.roi_heads = roi_heads
self.input_format = input_format
self.vis_period = vis_period
self.depth_model = depth_model
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
assert (
self.pixel_mean.shape == self.pixel_std.shape
), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
@classmethod
def from_config(cls, cfg, priors=None):
backbone = build_backbone(cfg, priors=priors)
if cfg.MODEL.DEPTH_ON:
depth_model = 'zoedepth'
pretrained_resource = 'local::depth/checkpoints/depth_anything_metric_depth_indoor.pt'
d_model = setup_depth_model(depth_model, pretrained_resource) #NOTE maybe make the depth model be learnable as well
shape_modified = {key:ShapeSpec(i.channels*2,stride=i.stride) for key, i in backbone.output_shape().items()}
else:
d_model = None
shape_modified = backbone.output_shape()
return {
"backbone": backbone,
"proposal_generator": build_proposal_generator(cfg, backbone.output_shape()),
"roi_heads": build_roi_heads(cfg, shape_modified, priors=priors),
"input_format": cfg.INPUT.FORMAT,
"vis_period": cfg.VIS_PERIOD,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
"depth_model": d_model,
}
@property
def device(self):
return self.pixel_mean.device
def _move_to_current_device(self, x):
return move_device_like(x, self.pixel_mean)
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]], normalise=True, img_type="image", convert=False, NoOp=False, to_float=False):
"""
Normalize, pad and batch the input images.
"""
images = [self._move_to_current_device(x[img_type]) for x in batched_inputs]
if normalise:
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
if convert:
# convert from BGR to RGB
images = [x[[2,1,0],:,:] for x in images]
if to_float:
images = [x.float()/255.0 for x in images]
if NoOp:
images = ImageList.from_tensors(images)
return images
images = ImageList.from_tensors(
images,
self.backbone.size_divisibility,
padding_constraints=self.backbone.padding_constraints,
)
return images
def _standardize(self, x:torch.Tensor, y:torch.Tensor):
'''standardise x to match the mean and std of y'''
ym = y.mean()
ys = y.std()
xm = x.mean()
xs = x.std()
return (x - xm) * (ys / xs) + ym
def cat_depth_features(self, features, images_raw):
pred_o = self.depth_model(images_raw.tensor.float()/255.0)
# depth features corresponding to p2, p3, p4, p5
d_features = pred_o['depth_features']
# img_features = features['p5']
# we must scale the depth map to the same size as the conv feature, otherwise the scale will not correspond correctly in the roi pooling
for (layer, img_feature), d_feature in zip(features.items(), reversed(d_features)):
d_feature = F.interpolate(d_feature, size=img_feature.shape[-2:], mode='bilinear', align_corners=True)
d_feature = self._standardize(d_feature, img_feature)
features[layer] = torch.cat((img_feature, d_feature), dim=1)
return features
def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
if not self.training:
return self.inference(batched_inputs) # segmentor is just none in inference because we dont need the loss
images = self.preprocess_image(batched_inputs)
# NOTE: images_raw are scaled to be padded to the same size as the largest.
# This is necessary because the images are of different sizes, so to batch them they must each be the same size.
images_raw = self.preprocess_image(batched_inputs, img_type='image', convert=True, normalise=False, NoOp=True)
# if we want depth maps they are there
depth_maps = self.preprocess_image(batched_inputs, img_type="depth_map", normalise=False, NoOp=True)
# Note if a single ground map in a batch is missing, we skip the ground map for the entire batch
ground_maps_fail = [i['ground_map'] is None for i in batched_inputs]
ground_maps_fail_idx = [i for i, x in enumerate(ground_maps_fail) if x]
for idx in ground_maps_fail_idx:
batched_inputs[idx]['ground_map'] = torch.tensor([[1]]) # make a dummy to indicate a fail
ground_maps = self.preprocess_image(batched_inputs, img_type="ground_map", normalise=False, NoOp=True)
# scaling factor for the sample relative to its original scale
# e.g., how much has the image been upsampled by? or downsampled?
im_scales_ratio = [info['height'] / im.shape[1] for (info, im) in zip(batched_inputs, images)]
# The unmodified intrinsics for the image
Ks = [torch.FloatTensor(info['K']) for info in batched_inputs]
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
features = self.backbone(images.tensor)
proposals, proposal_losses = self.proposal_generator(images, features, gt_instances)
if self.depth_model is not None:
features = self.cat_depth_features(features, images_raw)
instances, detector_losses = self.roi_heads(
images, images_raw, ground_maps, depth_maps, features, proposals,
Ks, im_scales_ratio,
gt_instances
)
if self.vis_period > 0:
storage = get_event_storage()
if storage.iter % self.vis_period == 0 and storage.iter > 0:
self.visualize_training(batched_inputs, proposals, instances)
losses = {}
losses.update(detector_losses)
losses.update(proposal_losses)
return losses
def inference(
self,
batched_inputs: List[Dict[str, torch.Tensor]],
detected_instances: Optional[List[Instances]] = None,
do_postprocess: bool = True,
):
assert not self.training
images = self.preprocess_image(batched_inputs)
images_raw = self.preprocess_image(batched_inputs, img_type='image', convert=True, normalise=False, NoOp=True)
# do we assume no access to ground maps in inference?
ground_maps = None
depth_maps = None
# scaling factor for the sample relative to its original scale
# e.g., how much has the image been upsampled by? or downsampled?
im_scales_ratio = [info['height'] / im.shape[1] for (info, im) in zip(batched_inputs, images)]
# The unmodified intrinsics for the image
Ks = [torch.FloatTensor(info['K']) for info in batched_inputs]
features = self.backbone(images.tensor)
# Pass oracle 2D boxes into the RoI heads
if type(batched_inputs == list) and np.any(['oracle2D' in b for b in batched_inputs]):
oracles = [b['oracle2D'] for b in batched_inputs]
results, _ = self.roi_heads(images, images_raw, ground_maps, depth_maps, features, oracles, Ks, im_scales_ratio, None)
# normal inference
else:
proposals, _ = self.proposal_generator(images, features, None)
if self.depth_model is not None:
features = self.cat_depth_features(features, images_raw)
# pred boxes are proposals
results, _ = self.roi_heads(images, images_raw, ground_maps, depth_maps, features, proposals, Ks, im_scales_ratio, None)
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes)
else:
return results
def visualize_training(self, batched_inputs, proposals, instances):
"""
A function used to visualize images and proposals. It shows ground truth
bounding boxes on the original image and up to 20 top-scoring predicted
object proposals on the original image. Users can implement different
visualization functions for different models.
Args:
batched_inputs (list): a list that contains input to the model.
proposals (list): a list that contains predicted proposals. Both
batched_inputs and proposals should have the same length.
instances (list): a list that contains predicted RoIhead instances. Both
batched_inputs and proposals should have the same length.
"""
storage = get_event_storage()
# minimum number of boxes to try to visualize per image
max_vis_prop = 20
if not hasattr(self, 'thing_classes'):
self.thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
self.num_classes = len(self.thing_classes)
only2d = instances is None
if only2d:
instances = [None]*len(batched_inputs)
for input, prop, instances_i in zip(batched_inputs, proposals, instances):
img = input["image"]
img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format)
img_3DGT = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
img_3DPR = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
'''
Visualize the 2D GT and proposal predictions
'''
v_gt = Visualizer(img, None)
v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes)
anno_img = v_gt.get_image()
box_size = min(len(prop.proposal_boxes), max_vis_prop)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
)
prop_img = v_pred.get_image()
vis_img_rpn = np.concatenate((anno_img, prop_img), axis=1)
vis_img_rpn = vis_img_rpn.transpose(2, 0, 1)
storage.put_image("Left: GT 2D bounding boxes; Right: Predicted 2D proposals", vis_img_rpn)
if only2d:
break
'''
Visualize the 3D GT and predictions
'''
K = torch.tensor(input['K'], device=self.device)
scale = input['height']/img.shape[0]
fx, sx = (val.item()/scale for val in K[0, [0, 2]])
fy, sy = (val.item()/scale for val in K[1, [1, 2]])
K_scaled = torch.tensor(
[[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]],
dtype=torch.float32, device=self.device
) @ K
gts_per_image = input["instances"]
gt_classes = gts_per_image.gt_classes
# Filter out irrelevant groundtruth
fg_selection_mask = (gt_classes != -1) & (gt_classes < self.num_classes)
gt_classes = gt_classes[fg_selection_mask]
gt_class_names = [self.thing_classes[cls_idx] for cls_idx in gt_classes]
gt_boxes = gts_per_image.gt_boxes.tensor[fg_selection_mask] # 2D boxes
gt_poses = gts_per_image.gt_poses[fg_selection_mask] # GT poses
# projected 2D center, depth, w, h, l, 3D center
gt_boxes3D = gts_per_image.gt_boxes3D[fg_selection_mask]
# this box may have been mirrored and scaled so
# we need to recompute XYZ in 3D by backprojecting.
gt_z = gt_boxes3D[:, 2]
gt_x3D = gt_z * (gt_boxes3D[:, 0] - sx)/fx
gt_y3D = gt_z * (gt_boxes3D[:, 1] - sy)/fy
# put together the GT boxes
gt_center_3D = torch.stack((gt_x3D, gt_y3D, gt_z)).T
gt_boxes3D_XYZ_WHL = torch.cat((gt_center_3D, gt_boxes3D[:, 3:6]), dim=1)
gt_colors = torch.tensor(
[util.get_color(i) for i in range(len(gt_boxes3D_XYZ_WHL))],
device=self.device
)/255.0
gt_meshes = util.mesh_cuboid(gt_boxes3D_XYZ_WHL, gt_poses, gt_colors)
# perform a simple NMS, which is not cls dependent.
keep = batched_nms(
instances_i.pred_boxes.tensor,
instances_i.scores,
torch.zeros(len(instances_i.scores), dtype=torch.long, device=instances_i.scores.device),
self.roi_heads.box_predictor.test_nms_thresh
)
keep = keep[:max_vis_prop]
num_to_visualize = len(keep)
pred_xyzwhl = torch.cat((instances_i.pred_center_cam[keep], instances_i.pred_dimensions[keep]), dim=1)
pred_pose = instances_i.pred_pose[keep]
pred_colors = torch.tensor(
[util.get_color(i) for i in range(num_to_visualize)],
device=self.device
)/255.0
pred_boxes = instances_i.pred_boxes[keep]
pred_scores = instances_i.scores[keep]
pred_classes = instances_i.pred_classes[keep]
pred_class_names = ['{} {:.2f}'.format(self.thing_classes[cls_idx], score) for cls_idx, score in zip(pred_classes, pred_scores)]
pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors)
# convert to lists
pred_meshes = [pred_meshes.__getitem__(i).detach() for i in range(len(pred_meshes))]
gt_meshes = [gt_meshes.__getitem__(i) for i in range(len(gt_meshes))]
img_3DPR = vis.draw_scene_view(img_3DPR, K_scaled.cpu().numpy(), pred_meshes, text=pred_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
img_3DGT = vis.draw_scene_view(img_3DGT, K_scaled.cpu().numpy(), gt_meshes, text=gt_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
# horizontal stack 3D GT and pred left/right
vis_img_3d = np.concatenate((img_3DGT, img_3DPR), axis=1)
vis_img_3d = vis_img_3d[:, :, [2, 1, 0]] # RGB
vis_img_3d = vis_img_3d.astype(np.uint8).transpose(2, 0, 1)
storage.put_image("Left: GT 3D cuboids; Right: Predicted 3D cuboids", vis_img_3d)
break # only visualize one image in a batch
@META_ARCH_REGISTRY.register()
class BoxNet(nn.Module):
@configurable
def __init__(
self,
*,
backbone: Backbone,
proposal_generator: nn.Module,
roi_heads: nn.Module,
pixel_mean: tuple[float],
pixel_std: tuple[float],
input_format: Optional[str] = None,
vis_period: int = 0,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
proposal_generator: a module that generates proposals using backbone features
roi_heads: a ROI head that performs per-region computation
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
input_format: describe the meaning of channels of input. Needed by visualization
vis_period: the period to run visualization. Set to 0 to disable.
"""
super().__init__()
self.backbone = backbone
self.proposal_generator = proposal_generator
self.roi_heads = roi_heads
self.input_format = input_format
self.vis_period = vis_period
if vis_period > 0:
assert input_format is not None, "input_format is required for visualization!"
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
assert (
self.pixel_mean.shape == self.pixel_std.shape
), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
@classmethod
def from_config(cls, cfg, priors=None):
backbone = build_backbone(cfg, priors=priors)
return {
"backbone": backbone,
"proposal_generator": build_proposal_generator(cfg, backbone.output_shape()),
"roi_heads": build_roi_heads(cfg, backbone.output_shape(), priors=priors),
"input_format": cfg.INPUT.FORMAT,
"vis_period": cfg.VIS_PERIOD,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
}
@property
def device(self):
return self.pixel_mean.device
def _move_to_current_device(self, x):
return move_device_like(x, self.pixel_mean)
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]], normalise=True, img_type="image", convert=False, NoOp=False, to_float=False):
"""
Normalize, pad and batch the input images.
"""
images = [self._move_to_current_device(x[img_type]) for x in batched_inputs]
if normalise:
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
else:
if convert:
# convert from BGR to RGB
images = [x[[2,1,0],:,:] for x in images]
if to_float:
images = [x.float()/255.0 for x in images]
if NoOp:
images = ImageList.from_tensors(images,0,)
return images
images = ImageList.from_tensors(
images,
self.backbone.size_divisibility,
padding_constraints=self.backbone.padding_constraints,
)
return images
def forward(self, batched_inputs: List[Dict[str, torch.Tensor]], experiment_type={'use_pred_boxes':True}, proposal_function='propose'):
if not self.training:
if not experiment_type['use_pred_boxes']: # MABO
return self.inference(batched_inputs, do_postprocess=False, experiment_type=experiment_type, proposal_function=proposal_function)
else: # AP
return self.inference(batched_inputs, do_postprocess=True, experiment_type=experiment_type, proposal_function=proposal_function)
if self.training:
images = self.preprocess_image(batched_inputs, img_type='image', convert=False)
images_raw = self.preprocess_image(batched_inputs, img_type='image', convert=True, normalise=False, NoOp=True)
depth_maps = self.preprocess_image(batched_inputs, img_type="depth_map", normalise=False, NoOp=True)
if batched_inputs[0]['ground_map'] is not None:
ground_maps = self.preprocess_image(batched_inputs, img_type="ground_map", normalise=False, NoOp=True)
if not torch.count_nonzero(ground_maps.tensor): # for some reason there is a single ground map causing problems
print('no_ground for', batched_inputs[0]['image_id'])
ground_maps = None
else:
ground_maps = None
# scaling factor for the sample relative to its original scale
# e.g., how much has the image been upsampled by? or downsampled?
im_scales_ratio = [info['height'] / im.shape[1] for (info, im) in zip(batched_inputs, images)]
# The unmodified intrinsics for the image
Ks = [torch.FloatTensor(info['K']) for info in batched_inputs]
features = None
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
# def forward(self, images, images_raw, combined_features, depth_maps, ground_maps, features, proposals, Ks, im_scales_ratio, segmentor, experiment_type, proposal_function, targets=None):
results = self.roi_heads(images, images_raw, None, depth_maps, ground_maps, features, gt_instances, Ks, im_scales_ratio, experiment_type, proposal_function)
return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes)
def inference(self,
batched_inputs: List[Dict[str, torch.Tensor]],
detected_instances: Optional[List[Instances]] = None, do_postprocess: bool = True, experiment_type={}, proposal_function='propose'):
assert not self.training
# must apply the same preprocessing to both the image, the depth map, and the mask
# except don't normalise the input for the segmentation method
images = self.preprocess_image(batched_inputs, img_type='image', convert=False)
images_raw = self.preprocess_image(batched_inputs, img_type='image', convert=True, normalise=False, NoOp=True)
depth_maps = self.preprocess_image(batched_inputs, img_type="depth_map", normalise=False, NoOp=True)
if batched_inputs[0]['ground_map'] is not None:
ground_maps = self.preprocess_image(batched_inputs, img_type="ground_map", normalise=False, NoOp=True)
else:
#logger.info("ground map file not found, setting to None")
ground_maps = None
# TODO: make logic to predict ground map on the fly
# logger.info("ground map file not found, computing...")
# raise NotImplementedError("Implement ground on the fly, see generate_ground_segmentations.py for reference")
# scaling factor for the sample relative to its original scale
# e.g., how much has the image been upsampled by? or downsampled?
im_scales_ratio = [info['height'] / im.shape[1] for (info, im) in zip(batched_inputs, images)]
# The unmodified intrinsics for the image
Ks = [torch.FloatTensor(info['K']) for info in batched_inputs]
# do_postprocess is the same as using predicted boxes
if do_postprocess:
# gt_instances should be None in inference mode
features = self.backbone(images.tensor)
# normal inference
proposals, _ = self.proposal_generator(images, features, None)
else:
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
else:
gt_instances = None
features, proposals = None, gt_instances
# combined_features = self.scorenet_base.forward_features(images, images_raw)
combined_features = None
# is it necessary to resize images back???
# use the mask and the 2D box to predict the 3D box
# proposals are ground truth for MABO plots and predictions for AP plots
results = self.roi_heads(images, images_raw, combined_features, depth_maps, ground_maps, features, proposals, Ks, im_scales_ratio, experiment_type, proposal_function)
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes)
else:
return results #[{'instances':results}]
def visualize_training(self, batched_inputs, proposals, instances):
"""
A function used to visualize images and proposals. It shows ground truth
bounding boxes on the original image and up to 20 top-scoring predicted
object proposals on the original image. Users can implement different
visualization functions for different models.
Args:
batched_inputs (list): a list that contains input to the model.
proposals (list): a list that contains predicted proposals. Both
batched_inputs and proposals should have the same length.
instances (list): a list that contains predicted RoIhead instances. Both
batched_inputs and proposals should have the same length.
"""
storage = get_event_storage()
# minimum number of boxes to try to visualize per image
max_vis_prop = 20
if not hasattr(self, 'thing_classes'):
self.thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
self.num_classes = len(self.thing_classes)
for input, prop, instances_i in zip(batched_inputs, proposals, instances):
img = input["image"]
img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format)
img_3DGT = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
img_3DPR = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR
'''
Visualize the 2D GT and proposal predictions
'''
v_gt = Visualizer(img, None)
v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes)
anno_img = v_gt.get_image()
box_size = min(len(prop.proposal_boxes), max_vis_prop)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
)
prop_img = v_pred.get_image()
vis_img_rpn = np.concatenate((anno_img, prop_img), axis=1)
vis_img_rpn = vis_img_rpn.transpose(2, 0, 1)
storage.put_image("Left: GT 2D bounding boxes; Right: Predicted 2D proposals", vis_img_rpn)
'''
Visualize the 3D GT and predictions
'''
K = torch.tensor(input['K'], device=self.device)
scale = input['height']/img.shape[0]
fx, sx = (val.item()/scale for val in K[0, [0, 2]])
fy, sy = (val.item()/scale for val in K[1, [1, 2]])
K_scaled = torch.tensor(
[[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]],
dtype=torch.float32, device=self.device
) @ K
gts_per_image = input["instances"]
gt_classes = gts_per_image.gt_classes
# Filter out irrelevant groundtruth
fg_selection_mask = (gt_classes != -1) & (gt_classes < self.num_classes)
gt_classes = gt_classes[fg_selection_mask]
gt_class_names = [self.thing_classes[cls_idx] for cls_idx in gt_classes]
gt_boxes = gts_per_image.gt_boxes.tensor[fg_selection_mask] # 2D boxes
gt_poses = gts_per_image.gt_poses[fg_selection_mask] # GT poses
# projected 2D center, depth, w, h, l, 3D center
gt_boxes3D = gts_per_image.gt_boxes3D[fg_selection_mask]
# this box may have been mirrored and scaled so
# we need to recompute XYZ in 3D by backprojecting.
gt_z = gt_boxes3D[:, 2]
gt_x3D = gt_z * (gt_boxes3D[:, 0] - sx)/fx
gt_y3D = gt_z * (gt_boxes3D[:, 1] - sy)/fy
# put together the GT boxes
gt_center_3D = torch.stack((gt_x3D, gt_y3D, gt_z)).T
gt_boxes3D_XYZ_WHL = torch.cat((gt_center_3D, gt_boxes3D[:, 3:6]), dim=1)
gt_colors = torch.tensor(
[util.get_color(i) for i in range(len(gt_boxes3D_XYZ_WHL))],
device=self.device
)/255.0
gt_meshes = util.mesh_cuboid(gt_boxes3D_XYZ_WHL, gt_poses, gt_colors)
# perform a simple NMS, which is not cls dependent.
keep = batched_nms(
instances_i.pred_boxes.tensor,
instances_i.scores,
torch.zeros(len(instances_i.scores), dtype=torch.long, device=instances_i.scores.device),
self.roi_heads.box_predictor.test_nms_thresh
)
keep = keep[:max_vis_prop]
num_to_visualize = len(keep)
pred_xyzwhl = torch.cat((instances_i.pred_center_cam[keep], instances_i.pred_dimensions[keep]), dim=1)
pred_pose = instances_i.pred_pose[keep]
pred_colors = torch.tensor(
[util.get_color(i) for i in range(num_to_visualize)],
device=self.device
)/255.0
pred_boxes = instances_i.pred_boxes[keep]
pred_scores = instances_i.scores[keep]
pred_classes = instances_i.pred_classes[keep]
pred_class_names = ['{} {:.2f}'.format(self.thing_classes[cls_idx], score) for cls_idx, score in zip(pred_classes, pred_scores)]
pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors)
# convert to lists
pred_meshes = [pred_meshes.__getitem__(i).detach() for i in range(len(pred_meshes))]
gt_meshes = [gt_meshes.__getitem__(i) for i in range(len(gt_meshes))]
img_3DPR = vis.draw_scene_view(img_3DPR, K_scaled.cpu().numpy(), pred_meshes, text=pred_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
img_3DGT = vis.draw_scene_view(img_3DGT, K_scaled.cpu().numpy(), gt_meshes, text=gt_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85)
# horizontal stack 3D GT and pred left/right
vis_img_3d = np.concatenate((img_3DGT, img_3DPR), axis=1)
vis_img_3d = vis_img_3d[:, :, [2, 1, 0]] # RGB
vis_img_3d = vis_img_3d.astype(np.uint8).transpose(2, 0, 1)
storage.put_image("Left: GT 3D cuboids; Right: Predicted 3D cuboids", vis_img_3d)
break
def build_model(cfg, priors=None):
"""
Build the whole model architecture, defined by ``cfg.MODEL.META_ARCHITECTURE``.
Note that it does not load any weights from ``cfg``.
"""
meta_arch = cfg.MODEL.META_ARCHITECTURE
model = META_ARCH_REGISTRY.get(meta_arch)(cfg, priors=priors)
model.to(torch.device(cfg.MODEL.DEVICE))
_log_api_usage("modeling.meta_arch." + meta_arch)
return model
def build_backbone(cfg, input_shape=None, priors=None):
"""
Build a backbone from `cfg.MODEL.BACKBONE.NAME`.
Returns:
an instance of :class:`Backbone`
"""
if input_shape is None:
input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))
backbone_name = cfg.MODEL.BACKBONE.NAME
backbone = BACKBONE_REGISTRY.get(backbone_name)(cfg, input_shape, priors)
assert isinstance(backbone, Backbone)
return backbone |