File size: 11,126 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# modified from https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/test_ap_on_coco.py 

import argparse
import os
import sys
import time

import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, DistributedSampler

from groundingdino.models import build_model
import groundingdino.datasets.transforms as T
from groundingdino.util import box_ops, get_tokenlizer
from groundingdino.util.misc import clean_state_dict, collate_fn
from groundingdino.util.slconfig import SLConfig

# from torchvision.datasets import CocoDetection
import torchvision

from groundingdino.util.vl_utils import build_captions_and_token_span, create_positive_map_from_span
from groundingdino.datasets.cocogrounding_eval import CocoGroundingEvaluator

# segment anything
from segment_anything import (
    build_sam,
    build_sam_hq,
    SamPredictor
)
import cv2
import json


def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    model.eval()
    return model


class CocoDetection(torchvision.datasets.CocoDetection):
    def __init__(self, img_folder, ann_file, transforms):
        super().__init__(img_folder, ann_file)
        self._transforms = transforms

    def __getitem__(self, idx):
        img, target = super().__getitem__(idx)  # target: list
        w, h = img.size
        boxes = [obj["bbox"] for obj in target]
        boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
        boxes[:, 2:] += boxes[:, :2]  # xywh -> xyxy
        boxes[:, 0::2].clamp_(min=0, max=w)
        boxes[:, 1::2].clamp_(min=0, max=h)
        # filt invalid boxes/masks/keypoints
        keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
        boxes = boxes[keep]

        target_new = {}
        image_id = self.ids[idx]
        target_new["image_id"] = image_id
        target_new["boxes"] = boxes
        target_new["orig_size"] = torch.as_tensor([int(h), int(w)])
        target_new['file_path'] = self.coco.imgs[image_id]['file_name']

        if self._transforms is not None:
            img, target = self._transforms(img, target_new)

        return img, target

class PostProcessSeginw(nn.Module):
    """ This module converts the model's output into the format expected by the coco api"""

    def __init__(self, num_select=300, coco_api=None, tokenlizer=None) -> None:
        super().__init__()
        self.num_select = num_select

        assert coco_api is not None
        category_dict = coco_api.dataset['categories']
        cat_list = [item['name'] for item in category_dict]
        # captions, cat2tokenspan = build_captions_and_token_span(cat_list, True)
        captions, cat2tokenspan = build_captions_and_token_span(cat_list, False)
        tokenspanlist = [cat2tokenspan[cat] for cat in cat_list]
        positive_map = create_positive_map_from_span(
            tokenlizer(captions), tokenspanlist)  # 80, 256. normed

        self.positive_map = positive_map

    @torch.no_grad()
    def forward(self, outputs, target_sizes, not_to_xyxy=False):
        """ Perform the computation
        Parameters:
            outputs: raw outputs of the model
            target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
                          For evaluation, this must be the original image size (before any data augmentation)
                          For visualization, this should be the image size after data augment, but before padding
        """
        num_select = self.num_select
        out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']

        # pos map to logit
        prob_to_token = out_logits.sigmoid()  # bs, 100, 256
        pos_maps = self.positive_map.to(prob_to_token.device)
        # (bs, 100, 256) @ (91, 256).T -> (bs, 100, 91)
        prob_to_label = prob_to_token @ pos_maps.T
        # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
        #     import ipdb; ipdb.set_trace()

        assert len(out_logits) == len(target_sizes)
        assert target_sizes.shape[1] == 2

        prob = prob_to_label
        topk_values, topk_indexes = torch.topk(
            prob.view(out_logits.shape[0], -1), num_select, dim=1)
        scores = topk_values
        topk_boxes = topk_indexes // prob.shape[2]
        labels = topk_indexes % prob.shape[2]

        if not_to_xyxy:
            boxes = out_bbox
        else:
            boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)

        boxes = torch.gather(
            boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))

        # and from relative [0, 1] to absolute [0, height] coordinates
        img_h, img_w = target_sizes.unbind(1)
        scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
        boxes = boxes * scale_fct[:, None, :]

        results = [{'scores': s, 'labels': l, 'boxes': b}
                   for s, l, b in zip(scores, labels, boxes)]

        return results

def main(args):
    # config
    cfg = SLConfig.fromfile(args.config_file)

    # build model
    model = load_model(args.config_file, args.checkpoint_path)
    model = model.to(args.device)
    model = model.eval()

    # build dataloader
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    dataset = CocoDetection(
        args.image_dir, args.anno_path, transforms=transform)
    data_loader = DataLoader(
        dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn)

    # build post processor
    tokenlizer = get_tokenlizer.get_tokenlizer(cfg.text_encoder_type)
    postprocessor = PostProcessSeginw(num_select=args.num_select,coco_api=dataset.coco, tokenlizer=tokenlizer)

    # build evaluator
    evaluator = CocoGroundingEvaluator(
        dataset.coco, iou_types=("bbox","segm"), useCats=True)

    # build captions
    category_dict = dataset.coco.dataset['categories']
    cat_list = [item['name'] for item in category_dict]
    caption = " . ".join(cat_list) + ' .'
    print("Input text prompt:", caption)

    # SAM
    use_sam_hq = args.use_sam_hq
    if use_sam_hq:
        sam_hq_checkpoint = args.sam_hq_checkpoint
        predictor = SamPredictor(build_sam_hq(checkpoint=sam_hq_checkpoint).to(args.device))
    else:
        sam_checkpoint = args.sam_checkpoint
        predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(args.device))


    json_file = []

    # run inference
    start = time.time()
    for i, (images, targets) in enumerate(data_loader):
        # get images and captions
        images = images.tensors.to(args.device)
        bs = images.shape[0]
        assert bs == 1

        input_captions = [caption] * bs

        # feed to the model
        outputs = model(images, captions=input_captions)
        orig_target_sizes = torch.stack(
            [t["orig_size"] for t in targets], dim=0).to(images.device)
        results = postprocessor(outputs, orig_target_sizes)

        sam_image = cv2.imread(args.image_dir+targets[0]['file_path'])
        sam_image = cv2.cvtColor(sam_image, cv2.COLOR_BGR2RGB)
        predictor.set_image(sam_image)

        input_boxes = results[0]['boxes'].cpu()     
        transformed_boxes = predictor.transform.apply_boxes_torch(input_boxes, sam_image.shape[:2]).to(args.device)
        masks, _, _ = predictor.predict_torch(
            point_coords = None,
            point_labels = None,
            boxes = transformed_boxes,
            multimask_output = False,
        )
        results[0]['masks'] = masks.cpu().numpy()

        cocogrounding_res = {
            target["image_id"]: output for target, output in zip(targets, results)}
        
        save_items = evaluator.update(cocogrounding_res)

        if args.save_json:
            new_items = list()
            for item in save_items:
                new_item = dict()
                new_item['image_id'] = item['image_id']
                new_item['category_id'] = item['category_id']
                new_item['segmentation'] = item['segmentation']
                new_item['score'] = item['score']
                new_items.append(new_item)

            json_file = json_file + new_items

        if (i+1) % 30 == 0:
            used_time = time.time() - start
            eta = len(data_loader) / (i+1e-5) * used_time - used_time
            print(
                f"processed {i}/{len(data_loader)} images. time: {used_time:.2f}s, ETA: {eta:.2f}s")

    evaluator.synchronize_between_processes()
    evaluator.accumulate()
    evaluator.summarize()
    print("Final results:", evaluator.coco_eval["segm"].stats.tolist())

    if args.save_json:
        if args.use_sam_hq:
            os.makedirs('seginw_output/sam_hq/', exist_ok=True)
            save_path = 'seginw_output/sam_hq/seginw-'+args.anno_path.split('/')[-3]+'_val.json'
        else:
            os.makedirs('seginw_output/sam/', exist_ok=True)
            save_path = 'seginw_output/sam/seginw-'+args.anno_path.split('/')[-3]+'_val.json'
        with open(save_path,'w') as f:
            json.dump(json_file,f)
        print(save_path)
    



if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        "Grounding DINO eval on COCO", add_help=True)
    # load model
    parser.add_argument("--config_file", "-c", type=str,
                        required=True, help="path to config file")
    parser.add_argument(
        "--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
    )
    parser.add_argument("--device", type=str, default="cuda",
                        help="running device (default: cuda)")

    # post processing
    parser.add_argument("--num_select", type=int, default=100,
                        help="number of topk to select")

    # coco info
    parser.add_argument("--anno_path", type=str,
                        required=True, help="coco root")
    parser.add_argument("--image_dir", type=str,
                        required=True, help="coco image dir")
    parser.add_argument("--num_workers", type=int, default=4,
                        help="number of workers for dataloader")

    # SAM
    parser.add_argument(
        "--sam_checkpoint", type=str, default='pretrained_checkpoint/sam_vit_h_4b8939.pth', help="path to sam checkpoint file"
    )
    parser.add_argument(
        "--sam_hq_checkpoint", type=str, default='pretrained_checkpoint/sam_hq_vit_h.pth', help="path to sam-hq checkpoint file"
    )
    parser.add_argument(
        "--use_sam_hq", action="store_true", help="using sam-hq for prediction"
    )
    
    # Save json result
    parser.add_argument(
        "--save_json", action="store_true", help="saving json result for evaluation"
    )

    args = parser.parse_args()

    main(args)