Spaces:
Sleeping
Sleeping
File size: 11,126 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# modified from https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/test_ap_on_coco.py
import argparse
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, DistributedSampler
from groundingdino.models import build_model
import groundingdino.datasets.transforms as T
from groundingdino.util import box_ops, get_tokenlizer
from groundingdino.util.misc import clean_state_dict, collate_fn
from groundingdino.util.slconfig import SLConfig
# from torchvision.datasets import CocoDetection
import torchvision
from groundingdino.util.vl_utils import build_captions_and_token_span, create_positive_map_from_span
from groundingdino.datasets.cocogrounding_eval import CocoGroundingEvaluator
# segment anything
from segment_anything import (
build_sam,
build_sam_hq,
SamPredictor
)
import cv2
import json
def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
class CocoDetection(torchvision.datasets.CocoDetection):
def __init__(self, img_folder, ann_file, transforms):
super().__init__(img_folder, ann_file)
self._transforms = transforms
def __getitem__(self, idx):
img, target = super().__getitem__(idx) # target: list
w, h = img.size
boxes = [obj["bbox"] for obj in target]
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2] # xywh -> xyxy
boxes[:, 0::2].clamp_(min=0, max=w)
boxes[:, 1::2].clamp_(min=0, max=h)
# filt invalid boxes/masks/keypoints
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
target_new = {}
image_id = self.ids[idx]
target_new["image_id"] = image_id
target_new["boxes"] = boxes
target_new["orig_size"] = torch.as_tensor([int(h), int(w)])
target_new['file_path'] = self.coco.imgs[image_id]['file_name']
if self._transforms is not None:
img, target = self._transforms(img, target_new)
return img, target
class PostProcessSeginw(nn.Module):
""" This module converts the model's output into the format expected by the coco api"""
def __init__(self, num_select=300, coco_api=None, tokenlizer=None) -> None:
super().__init__()
self.num_select = num_select
assert coco_api is not None
category_dict = coco_api.dataset['categories']
cat_list = [item['name'] for item in category_dict]
# captions, cat2tokenspan = build_captions_and_token_span(cat_list, True)
captions, cat2tokenspan = build_captions_and_token_span(cat_list, False)
tokenspanlist = [cat2tokenspan[cat] for cat in cat_list]
positive_map = create_positive_map_from_span(
tokenlizer(captions), tokenspanlist) # 80, 256. normed
self.positive_map = positive_map
@torch.no_grad()
def forward(self, outputs, target_sizes, not_to_xyxy=False):
""" Perform the computation
Parameters:
outputs: raw outputs of the model
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
num_select = self.num_select
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
# pos map to logit
prob_to_token = out_logits.sigmoid() # bs, 100, 256
pos_maps = self.positive_map.to(prob_to_token.device)
# (bs, 100, 256) @ (91, 256).T -> (bs, 100, 91)
prob_to_label = prob_to_token @ pos_maps.T
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
assert len(out_logits) == len(target_sizes)
assert target_sizes.shape[1] == 2
prob = prob_to_label
topk_values, topk_indexes = torch.topk(
prob.view(out_logits.shape[0], -1), num_select, dim=1)
scores = topk_values
topk_boxes = topk_indexes // prob.shape[2]
labels = topk_indexes % prob.shape[2]
if not_to_xyxy:
boxes = out_bbox
else:
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
boxes = torch.gather(
boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{'scores': s, 'labels': l, 'boxes': b}
for s, l, b in zip(scores, labels, boxes)]
return results
def main(args):
# config
cfg = SLConfig.fromfile(args.config_file)
# build model
model = load_model(args.config_file, args.checkpoint_path)
model = model.to(args.device)
model = model.eval()
# build dataloader
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
dataset = CocoDetection(
args.image_dir, args.anno_path, transforms=transform)
data_loader = DataLoader(
dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn)
# build post processor
tokenlizer = get_tokenlizer.get_tokenlizer(cfg.text_encoder_type)
postprocessor = PostProcessSeginw(num_select=args.num_select,coco_api=dataset.coco, tokenlizer=tokenlizer)
# build evaluator
evaluator = CocoGroundingEvaluator(
dataset.coco, iou_types=("bbox","segm"), useCats=True)
# build captions
category_dict = dataset.coco.dataset['categories']
cat_list = [item['name'] for item in category_dict]
caption = " . ".join(cat_list) + ' .'
print("Input text prompt:", caption)
# SAM
use_sam_hq = args.use_sam_hq
if use_sam_hq:
sam_hq_checkpoint = args.sam_hq_checkpoint
predictor = SamPredictor(build_sam_hq(checkpoint=sam_hq_checkpoint).to(args.device))
else:
sam_checkpoint = args.sam_checkpoint
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(args.device))
json_file = []
# run inference
start = time.time()
for i, (images, targets) in enumerate(data_loader):
# get images and captions
images = images.tensors.to(args.device)
bs = images.shape[0]
assert bs == 1
input_captions = [caption] * bs
# feed to the model
outputs = model(images, captions=input_captions)
orig_target_sizes = torch.stack(
[t["orig_size"] for t in targets], dim=0).to(images.device)
results = postprocessor(outputs, orig_target_sizes)
sam_image = cv2.imread(args.image_dir+targets[0]['file_path'])
sam_image = cv2.cvtColor(sam_image, cv2.COLOR_BGR2RGB)
predictor.set_image(sam_image)
input_boxes = results[0]['boxes'].cpu()
transformed_boxes = predictor.transform.apply_boxes_torch(input_boxes, sam_image.shape[:2]).to(args.device)
masks, _, _ = predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
results[0]['masks'] = masks.cpu().numpy()
cocogrounding_res = {
target["image_id"]: output for target, output in zip(targets, results)}
save_items = evaluator.update(cocogrounding_res)
if args.save_json:
new_items = list()
for item in save_items:
new_item = dict()
new_item['image_id'] = item['image_id']
new_item['category_id'] = item['category_id']
new_item['segmentation'] = item['segmentation']
new_item['score'] = item['score']
new_items.append(new_item)
json_file = json_file + new_items
if (i+1) % 30 == 0:
used_time = time.time() - start
eta = len(data_loader) / (i+1e-5) * used_time - used_time
print(
f"processed {i}/{len(data_loader)} images. time: {used_time:.2f}s, ETA: {eta:.2f}s")
evaluator.synchronize_between_processes()
evaluator.accumulate()
evaluator.summarize()
print("Final results:", evaluator.coco_eval["segm"].stats.tolist())
if args.save_json:
if args.use_sam_hq:
os.makedirs('seginw_output/sam_hq/', exist_ok=True)
save_path = 'seginw_output/sam_hq/seginw-'+args.anno_path.split('/')[-3]+'_val.json'
else:
os.makedirs('seginw_output/sam/', exist_ok=True)
save_path = 'seginw_output/sam/seginw-'+args.anno_path.split('/')[-3]+'_val.json'
with open(save_path,'w') as f:
json.dump(json_file,f)
print(save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"Grounding DINO eval on COCO", add_help=True)
# load model
parser.add_argument("--config_file", "-c", type=str,
required=True, help="path to config file")
parser.add_argument(
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--device", type=str, default="cuda",
help="running device (default: cuda)")
# post processing
parser.add_argument("--num_select", type=int, default=100,
help="number of topk to select")
# coco info
parser.add_argument("--anno_path", type=str,
required=True, help="coco root")
parser.add_argument("--image_dir", type=str,
required=True, help="coco image dir")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers for dataloader")
# SAM
parser.add_argument(
"--sam_checkpoint", type=str, default='pretrained_checkpoint/sam_vit_h_4b8939.pth', help="path to sam checkpoint file"
)
parser.add_argument(
"--sam_hq_checkpoint", type=str, default='pretrained_checkpoint/sam_hq_vit_h.pth', help="path to sam-hq checkpoint file"
)
parser.add_argument(
"--use_sam_hq", action="store_true", help="using sam-hq for prediction"
)
# Save json result
parser.add_argument(
"--save_json", action="store_true", help="saving json result for evaluation"
)
args = parser.parse_args()
main(args)
|