Spaces:
Sleeping
Sleeping
File size: 30,634 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
# Copyright by HQ-SAM team
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import argparse
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
import cv2
import random
from typing import Dict, List, Tuple
from segment_anything_training import sam_model_registry
from segment_anything_training.modeling import TwoWayTransformer, MaskDecoder
from utils.dataloader import get_im_gt_name_dict, create_dataloaders, RandomHFlip, Resize, LargeScaleJitter
from utils.loss_mask import loss_masks
import utils.misc as misc
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
class MaskDecoderHQ(MaskDecoder):
def __init__(self, model_type):
super().__init__(transformer_dim=256,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=256,
mlp_dim=2048,
num_heads=8,
),
num_multimask_outputs=3,
activation=nn.GELU,
iou_head_depth= 3,
iou_head_hidden_dim= 256,)
assert model_type in ["vit_b","vit_l","vit_h"]
checkpoint_dict = {"vit_b":"pretrained_checkpoint/sam_vit_b_maskdecoder.pth",
"vit_l":"pretrained_checkpoint/sam_vit_l_maskdecoder.pth",
'vit_h':"pretrained_checkpoint/sam_vit_h_maskdecoder.pth"}
checkpoint_path = checkpoint_dict[model_type]
self.load_state_dict(torch.load(checkpoint_path))
print("HQ Decoder init from SAM MaskDecoder")
for n,p in self.named_parameters():
p.requires_grad = False
transformer_dim=256
vit_dim_dict = {"vit_b":768,"vit_l":1024,"vit_h":1280}
vit_dim = vit_dim_dict[model_type]
self.hf_token = nn.Embedding(1, transformer_dim)
self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
self.num_mask_tokens = self.num_mask_tokens + 1
self.compress_vit_feat = nn.Sequential(
nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2))
self.embedding_encoder = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
)
self.embedding_maskfeature = nn.Sequential(
nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1),
LayerNorm2d(transformer_dim // 4),
nn.GELU(),
nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1))
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
hq_token_only: bool,
interm_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted hq masks
"""
vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features)
batch_len = len(image_embeddings)
masks = []
iou_preds = []
for i_batch in range(batch_len):
mask, iou_pred = self.predict_masks(
image_embeddings=image_embeddings[i_batch].unsqueeze(0),
image_pe=image_pe[i_batch],
sparse_prompt_embeddings=sparse_prompt_embeddings[i_batch],
dense_prompt_embeddings=dense_prompt_embeddings[i_batch],
hq_feature = hq_features[i_batch].unsqueeze(0)
)
masks.append(mask)
iou_preds.append(iou_pred)
masks = torch.cat(masks,0)
iou_preds = torch.cat(iou_preds,0)
# Select the correct mask or masks for output
if multimask_output:
# mask with highest score
mask_slice = slice(1,self.num_mask_tokens-1)
iou_preds = iou_preds[:, mask_slice]
iou_preds, max_iou_idx = torch.max(iou_preds,dim=1)
iou_preds = iou_preds.unsqueeze(1)
masks_multi = masks[:, mask_slice, :, :]
masks_sam = masks_multi[torch.arange(masks_multi.size(0)),max_iou_idx].unsqueeze(1)
else:
# singale mask output, default
mask_slice = slice(0, 1)
masks_sam = masks[:,mask_slice]
masks_hq = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens), :, :]
if hq_token_only:
return masks_hq
else:
return masks_sam, masks_hq
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
hq_feature: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding_sam = self.output_upscaling(src)
upscaled_embedding_ours = self.embedding_maskfeature(upscaled_embedding_sam) + hq_feature
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
if i < 4:
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
else:
hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding_sam.shape
masks_sam = (hyper_in[:,:4] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w)
masks_ours = (hyper_in[:,4:] @ upscaled_embedding_ours.view(b, c, h * w)).view(b, -1, h, w)
masks = torch.cat([masks_sam,masks_ours],dim=1)
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
def show_anns(masks, input_point, input_box, input_label, filename, image, ious, boundary_ious):
if len(masks) == 0:
return
for i, (mask, iou, biou) in enumerate(zip(masks, ious, boundary_ious)):
plt.figure(figsize=(10,10))
plt.imshow(image)
show_mask(mask, plt.gca())
if input_box is not None:
show_box(input_box, plt.gca())
if (input_point is not None) and (input_label is not None):
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.savefig(filename+'_'+str(i)+'.png',bbox_inches='tight',pad_inches=-0.1)
plt.close()
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def get_args_parser():
parser = argparse.ArgumentParser('HQ-SAM', add_help=False)
parser.add_argument("--output", type=str, required=True,
help="Path to the directory where masks and checkpoints will be output")
parser.add_argument("--model-type", type=str, default="vit_l",
help="The type of model to load, in ['vit_h', 'vit_l', 'vit_b']")
parser.add_argument("--checkpoint", type=str, required=True,
help="The path to the SAM checkpoint to use for mask generation.")
parser.add_argument("--device", type=str, default="cuda",
help="The device to run generation on.")
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--learning_rate', default=1e-3, type=float)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--lr_drop_epoch', default=10, type=int)
parser.add_argument('--max_epoch_num', default=12, type=int)
parser.add_argument('--input_size', default=[1024,1024], type=list)
parser.add_argument('--batch_size_train', default=4, type=int)
parser.add_argument('--batch_size_valid', default=1, type=int)
parser.add_argument('--model_save_fre', default=1, type=int)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--rank', default=0, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', type=int, help='local rank for dist')
parser.add_argument('--find_unused_params', action='store_true')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--visualize', action='store_true')
parser.add_argument("--restore-model", type=str,
help="The path to the hq_decoder training checkpoint for evaluation")
return parser.parse_args()
def main(net, train_datasets, valid_datasets, args):
misc.init_distributed_mode(args)
print('world size: {}'.format(args.world_size))
print('rank: {}'.format(args.rank))
print('local_rank: {}'.format(args.local_rank))
print("args: " + str(args) + '\n')
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
### --- Step 1: Train or Valid dataset ---
if not args.eval:
print("--- create training dataloader ---")
train_im_gt_list = get_im_gt_name_dict(train_datasets, flag="train")
train_dataloaders, train_datasets = create_dataloaders(train_im_gt_list,
my_transforms = [
RandomHFlip(),
LargeScaleJitter()
],
batch_size = args.batch_size_train,
training = True)
print(len(train_dataloaders), " train dataloaders created")
print("--- create valid dataloader ---")
valid_im_gt_list = get_im_gt_name_dict(valid_datasets, flag="valid")
valid_dataloaders, valid_datasets = create_dataloaders(valid_im_gt_list,
my_transforms = [
Resize(args.input_size)
],
batch_size=args.batch_size_valid,
training=False)
print(len(valid_dataloaders), " valid dataloaders created")
### --- Step 2: DistributedDataParallel---
if torch.cuda.is_available():
net.cuda()
net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
net_without_ddp = net.module
### --- Step 3: Train or Evaluate ---
if not args.eval:
print("--- define optimizer ---")
optimizer = optim.Adam(net_without_ddp.parameters(), lr=args.learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop_epoch)
lr_scheduler.last_epoch = args.start_epoch
train(args, net, optimizer, train_dataloaders, valid_dataloaders, lr_scheduler)
else:
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
_ = sam.to(device=args.device)
sam = torch.nn.parallel.DistributedDataParallel(sam, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
if args.restore_model:
print("restore model from:", args.restore_model)
if torch.cuda.is_available():
net_without_ddp.load_state_dict(torch.load(args.restore_model))
else:
net_without_ddp.load_state_dict(torch.load(args.restore_model,map_location="cpu"))
evaluate(args, net, sam, valid_dataloaders, args.visualize)
def train(args, net, optimizer, train_dataloaders, valid_dataloaders, lr_scheduler):
if misc.is_main_process():
os.makedirs(args.output, exist_ok=True)
epoch_start = args.start_epoch
epoch_num = args.max_epoch_num
train_num = len(train_dataloaders)
net.train()
_ = net.to(device=args.device)
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
_ = sam.to(device=args.device)
sam = torch.nn.parallel.DistributedDataParallel(sam, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
for epoch in range(epoch_start,epoch_num):
print("epoch: ",epoch, " learning rate: ", optimizer.param_groups[0]["lr"])
metric_logger = misc.MetricLogger(delimiter=" ")
train_dataloaders.batch_sampler.sampler.set_epoch(epoch)
for data in metric_logger.log_every(train_dataloaders,1000):
inputs, labels = data['image'], data['label']
if torch.cuda.is_available():
inputs = inputs.cuda()
labels = labels.cuda()
imgs = inputs.permute(0, 2, 3, 1).cpu().numpy()
# input prompt
input_keys = ['box','point','noise_mask']
labels_box = misc.masks_to_boxes(labels[:,0,:,:])
try:
labels_points = misc.masks_sample_points(labels[:,0,:,:])
except:
# less than 10 points
input_keys = ['box','noise_mask']
labels_256 = F.interpolate(labels, size=(256, 256), mode='bilinear')
labels_noisemask = misc.masks_noise(labels_256)
batched_input = []
for b_i in range(len(imgs)):
dict_input = dict()
input_image = torch.as_tensor(imgs[b_i].astype(dtype=np.uint8), device=sam.device).permute(2, 0, 1).contiguous()
dict_input['image'] = input_image
input_type = random.choice(input_keys)
if input_type == 'box':
dict_input['boxes'] = labels_box[b_i:b_i+1]
elif input_type == 'point':
point_coords = labels_points[b_i:b_i+1]
dict_input['point_coords'] = point_coords
dict_input['point_labels'] = torch.ones(point_coords.shape[1], device=point_coords.device)[None,:]
elif input_type == 'noise_mask':
dict_input['mask_inputs'] = labels_noisemask[b_i:b_i+1]
else:
raise NotImplementedError
dict_input['original_size'] = imgs[b_i].shape[:2]
batched_input.append(dict_input)
with torch.no_grad():
batched_output, interm_embeddings = sam(batched_input, multimask_output=False)
batch_len = len(batched_output)
encoder_embedding = torch.cat([batched_output[i_l]['encoder_embedding'] for i_l in range(batch_len)], dim=0)
image_pe = [batched_output[i_l]['image_pe'] for i_l in range(batch_len)]
sparse_embeddings = [batched_output[i_l]['sparse_embeddings'] for i_l in range(batch_len)]
dense_embeddings = [batched_output[i_l]['dense_embeddings'] for i_l in range(batch_len)]
masks_hq = net(
image_embeddings=encoder_embedding,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
hq_token_only=True,
interm_embeddings=interm_embeddings,
)
loss_mask, loss_dice = loss_masks(masks_hq, labels/255.0, len(masks_hq))
loss = loss_mask + loss_dice
loss_dict = {"loss_mask": loss_mask, "loss_dice":loss_dice}
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = misc.reduce_dict(loss_dict)
losses_reduced_scaled = sum(loss_dict_reduced.values())
loss_value = losses_reduced_scaled.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
metric_logger.update(training_loss=loss_value, **loss_dict_reduced)
print("Finished epoch: ", epoch)
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
train_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items() if meter.count > 0}
lr_scheduler.step()
test_stats = evaluate(args, net, sam, valid_dataloaders)
train_stats.update(test_stats)
net.train()
if epoch % args.model_save_fre == 0:
model_name = "/epoch_"+str(epoch)+".pth"
print('come here save at', args.output + model_name)
misc.save_on_master(net.module.state_dict(), args.output + model_name)
# Finish training
print("Training Reaches The Maximum Epoch Number")
# merge sam and hq_decoder
if misc.is_main_process():
sam_ckpt = torch.load(args.checkpoint)
hq_decoder = torch.load(args.output + model_name)
for key in hq_decoder.keys():
sam_key = 'mask_decoder.'+key
if sam_key not in sam_ckpt.keys():
sam_ckpt[sam_key] = hq_decoder[key]
model_name = "/sam_hq_epoch_"+str(epoch)+".pth"
torch.save(sam_ckpt, args.output + model_name)
def compute_iou(preds, target):
assert target.shape[1] == 1, 'only support one mask per image now'
if(preds.shape[2]!=target.shape[2] or preds.shape[3]!=target.shape[3]):
postprocess_preds = F.interpolate(preds, size=target.size()[2:], mode='bilinear', align_corners=False)
else:
postprocess_preds = preds
iou = 0
for i in range(0,len(preds)):
iou = iou + misc.mask_iou(postprocess_preds[i],target[i])
return iou / len(preds)
def compute_boundary_iou(preds, target):
assert target.shape[1] == 1, 'only support one mask per image now'
if(preds.shape[2]!=target.shape[2] or preds.shape[3]!=target.shape[3]):
postprocess_preds = F.interpolate(preds, size=target.size()[2:], mode='bilinear', align_corners=False)
else:
postprocess_preds = preds
iou = 0
for i in range(0,len(preds)):
iou = iou + misc.boundary_iou(target[i],postprocess_preds[i])
return iou / len(preds)
def evaluate(args, net, sam, valid_dataloaders, visualize=False):
net.eval()
print("Validating...")
test_stats = {}
for k in range(len(valid_dataloaders)):
metric_logger = misc.MetricLogger(delimiter=" ")
valid_dataloader = valid_dataloaders[k]
print('valid_dataloader len:', len(valid_dataloader))
for data_val in metric_logger.log_every(valid_dataloader,1000):
imidx_val, inputs_val, labels_val, shapes_val, labels_ori = data_val['imidx'], data_val['image'], data_val['label'], data_val['shape'], data_val['ori_label']
if torch.cuda.is_available():
inputs_val = inputs_val.cuda()
labels_val = labels_val.cuda()
labels_ori = labels_ori.cuda()
imgs = inputs_val.permute(0, 2, 3, 1).cpu().numpy()
labels_box = misc.masks_to_boxes(labels_val[:,0,:,:])
input_keys = ['box']
batched_input = []
for b_i in range(len(imgs)):
dict_input = dict()
input_image = torch.as_tensor(imgs[b_i].astype(dtype=np.uint8), device=sam.device).permute(2, 0, 1).contiguous()
dict_input['image'] = input_image
input_type = random.choice(input_keys)
if input_type == 'box':
dict_input['boxes'] = labels_box[b_i:b_i+1]
elif input_type == 'point':
point_coords = labels_points[b_i:b_i+1]
dict_input['point_coords'] = point_coords
dict_input['point_labels'] = torch.ones(point_coords.shape[1], device=point_coords.device)[None,:]
elif input_type == 'noise_mask':
dict_input['mask_inputs'] = labels_noisemask[b_i:b_i+1]
else:
raise NotImplementedError
dict_input['original_size'] = imgs[b_i].shape[:2]
batched_input.append(dict_input)
with torch.no_grad():
batched_output, interm_embeddings = sam(batched_input, multimask_output=False)
batch_len = len(batched_output)
encoder_embedding = torch.cat([batched_output[i_l]['encoder_embedding'] for i_l in range(batch_len)], dim=0)
image_pe = [batched_output[i_l]['image_pe'] for i_l in range(batch_len)]
sparse_embeddings = [batched_output[i_l]['sparse_embeddings'] for i_l in range(batch_len)]
dense_embeddings = [batched_output[i_l]['dense_embeddings'] for i_l in range(batch_len)]
masks_sam, masks_hq = net(
image_embeddings=encoder_embedding,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
hq_token_only=False,
interm_embeddings=interm_embeddings,
)
iou = compute_iou(masks_hq,labels_ori)
boundary_iou = compute_boundary_iou(masks_hq,labels_ori)
if visualize:
print("visualize")
os.makedirs(args.output, exist_ok=True)
masks_hq_vis = (F.interpolate(masks_hq.detach(), (1024, 1024), mode="bilinear", align_corners=False) > 0).cpu()
for ii in range(len(imgs)):
base = data_val['imidx'][ii].item()
print('base:', base)
save_base = os.path.join(args.output, str(k)+'_'+ str(base))
imgs_ii = imgs[ii].astype(dtype=np.uint8)
show_iou = torch.tensor([iou.item()])
show_boundary_iou = torch.tensor([boundary_iou.item()])
show_anns(masks_hq_vis[ii], None, labels_box[ii].cpu(), None, save_base , imgs_ii, show_iou, show_boundary_iou)
loss_dict = {"val_iou_"+str(k): iou, "val_boundary_iou_"+str(k): boundary_iou}
loss_dict_reduced = misc.reduce_dict(loss_dict)
metric_logger.update(**loss_dict_reduced)
print('============================')
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
resstat = {k: meter.global_avg for k, meter in metric_logger.meters.items() if meter.count > 0}
test_stats.update(resstat)
return test_stats
if __name__ == "__main__":
### --------------- Configuring the Train and Valid datasets ---------------
dataset_dis = {"name": "DIS5K-TR",
"im_dir": "./data/DIS5K/DIS-TR/im",
"gt_dir": "./data/DIS5K/DIS-TR/gt",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_thin = {"name": "ThinObject5k-TR",
"im_dir": "./data/thin_object_detection/ThinObject5K/images_train",
"gt_dir": "./data/thin_object_detection/ThinObject5K/masks_train",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_fss = {"name": "FSS",
"im_dir": "./data/cascade_psp/fss_all",
"gt_dir": "./data/cascade_psp/fss_all",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_duts = {"name": "DUTS-TR",
"im_dir": "./data/cascade_psp/DUTS-TR",
"gt_dir": "./data/cascade_psp/DUTS-TR",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_duts_te = {"name": "DUTS-TE",
"im_dir": "./data/cascade_psp/DUTS-TE",
"gt_dir": "./data/cascade_psp/DUTS-TE",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_ecssd = {"name": "ECSSD",
"im_dir": "./data/cascade_psp/ecssd",
"gt_dir": "./data/cascade_psp/ecssd",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_msra = {"name": "MSRA10K",
"im_dir": "./data/cascade_psp/MSRA_10K",
"gt_dir": "./data/cascade_psp/MSRA_10K",
"im_ext": ".jpg",
"gt_ext": ".png"}
# valid set
dataset_coift_val = {"name": "COIFT",
"im_dir": "./data/thin_object_detection/COIFT/images",
"gt_dir": "./data/thin_object_detection/COIFT/masks",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_hrsod_val = {"name": "HRSOD",
"im_dir": "./data/thin_object_detection/HRSOD/images",
"gt_dir": "./data/thin_object_detection/HRSOD/masks_max255",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_thin_val = {"name": "ThinObject5k-TE",
"im_dir": "./data/thin_object_detection/ThinObject5K/images_test",
"gt_dir": "./data/thin_object_detection/ThinObject5K/masks_test",
"im_ext": ".jpg",
"gt_ext": ".png"}
dataset_dis_val = {"name": "DIS5K-VD",
"im_dir": "./data/DIS5K/DIS-VD/im",
"gt_dir": "./data/DIS5K/DIS-VD/gt",
"im_ext": ".jpg",
"gt_ext": ".png"}
train_datasets = [dataset_dis, dataset_thin, dataset_fss, dataset_duts, dataset_duts_te, dataset_ecssd, dataset_msra]
valid_datasets = [dataset_dis_val, dataset_coift_val, dataset_hrsod_val, dataset_thin_val]
args = get_args_parser()
net = MaskDecoderHQ(args.model_type)
main(net, train_datasets, valid_datasets, args)
|