File size: 7,836 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
from torch.nn import functional as F
from typing import List, Optional
import utils.misc as misc

def point_sample(input, point_coords, **kwargs):
    """
    A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
    Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
    [0, 1] x [0, 1] square.
    Args:
        input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
        point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
        [0, 1] x [0, 1] normalized point coordinates.
    Returns:
        output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
            features for points in `point_coords`. The features are obtained via bilinear
            interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
    """
    add_dim = False
    if point_coords.dim() == 3:
        add_dim = True
        point_coords = point_coords.unsqueeze(2)
    output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs)
    if add_dim:
        output = output.squeeze(3)
    return output

def cat(tensors: List[torch.Tensor], dim: int = 0):
    """
    Efficient version of torch.cat that avoids a copy if there is only a single element in a list
    """
    assert isinstance(tensors, (list, tuple))
    if len(tensors) == 1:
        return tensors[0]
    return torch.cat(tensors, dim)

def get_uncertain_point_coords_with_randomness(
    coarse_logits, uncertainty_func, num_points, oversample_ratio, importance_sample_ratio
):
    """
    Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The unceratinties
        are calculated for each point using 'uncertainty_func' function that takes point's logit
        prediction as input.
    See PointRend paper for details.
    Args:
        coarse_logits (Tensor): A tensor of shape (N, C, Hmask, Wmask) or (N, 1, Hmask, Wmask) for
            class-specific or class-agnostic prediction.
        uncertainty_func: A function that takes a Tensor of shape (N, C, P) or (N, 1, P) that
            contains logit predictions for P points and returns their uncertainties as a Tensor of
            shape (N, 1, P).
        num_points (int): The number of points P to sample.
        oversample_ratio (int): Oversampling parameter.
        importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling.
    Returns:
        point_coords (Tensor): A tensor of shape (N, P, 2) that contains the coordinates of P
            sampled points.
    """
    assert oversample_ratio >= 1
    assert importance_sample_ratio <= 1 and importance_sample_ratio >= 0
    num_boxes = coarse_logits.shape[0]
    num_sampled = int(num_points * oversample_ratio)
    point_coords = torch.rand(num_boxes, num_sampled, 2, device=coarse_logits.device)
    point_logits = point_sample(coarse_logits, point_coords, align_corners=False)
    # It is crucial to calculate uncertainty based on the sampled prediction value for the points.
    # Calculating uncertainties of the coarse predictions first and sampling them for points leads
    # to incorrect results.
    # To illustrate this: assume uncertainty_func(logits)=-abs(logits), a sampled point between
    # two coarse predictions with -1 and 1 logits has 0 logits, and therefore 0 uncertainty value.
    # However, if we calculate uncertainties for the coarse predictions first,
    # both will have -1 uncertainty, and the sampled point will get -1 uncertainty.
    point_uncertainties = uncertainty_func(point_logits)
    num_uncertain_points = int(importance_sample_ratio * num_points)
    num_random_points = num_points - num_uncertain_points
    idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
    shift = num_sampled * torch.arange(num_boxes, dtype=torch.long, device=coarse_logits.device)
    idx += shift[:, None]
    point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
        num_boxes, num_uncertain_points, 2
    )
    if num_random_points > 0:
        point_coords = cat(
            [
                point_coords,
                torch.rand(num_boxes, num_random_points, 2, device=coarse_logits.device),
            ],
            dim=1,
        )
    return point_coords

def dice_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        num_masks: float,
    ):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1)
    numerator = 2 * (inputs * targets).sum(-1)
    denominator = inputs.sum(-1) + targets.sum(-1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss.sum() / num_masks


dice_loss_jit = torch.jit.script(
    dice_loss
)  # type: torch.jit.ScriptModule


def sigmoid_ce_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        num_masks: float,
    ):
    """
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    Returns:
        Loss tensor
    """
    loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")

    return loss.mean(1).sum() / num_masks


sigmoid_ce_loss_jit = torch.jit.script(
    sigmoid_ce_loss
)  # type: torch.jit.ScriptModule


def calculate_uncertainty(logits):
    """
    We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
        foreground class in `classes`.
    Args:
        logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
            class-agnostic, where R is the total number of predicted masks in all images and C is
            the number of foreground classes. The values are logits.
    Returns:
        scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
            the most uncertain locations having the highest uncertainty score.
    """
    assert logits.shape[1] == 1
    gt_class_logits = logits.clone()
    return -(torch.abs(gt_class_logits))

def loss_masks(src_masks, target_masks, num_masks, oversample_ratio=3.0):
    """Compute the losses related to the masks: the focal loss and the dice loss.
    targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
    """

    # No need to upsample predictions as we are using normalized coordinates :)

    with torch.no_grad():
        # sample point_coords
        point_coords = get_uncertain_point_coords_with_randomness(
            src_masks,
            lambda logits: calculate_uncertainty(logits),
            112 * 112,
            oversample_ratio,
            0.75,
        )
        # get gt labels
        point_labels = point_sample(
            target_masks,
            point_coords,
            align_corners=False,
        ).squeeze(1)

    point_logits = point_sample(
        src_masks,
        point_coords,
        align_corners=False,
    ).squeeze(1)

    loss_mask = sigmoid_ce_loss_jit(point_logits, point_labels, num_masks)
    loss_dice = dice_loss_jit(point_logits, point_labels, num_masks)

    del src_masks
    del target_masks
    return loss_mask, loss_dice