File size: 17,694 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Misc functions, including distributed helpers.

Mostly copy-paste from torchvision references.
"""
import os
import random 
import subprocess
import time
from collections import OrderedDict, defaultdict, deque
import datetime
import pickle
from typing import Optional, List

import json, time
import numpy as np
import torch
import torch.distributed as dist
from torch import Tensor

import colorsys
import torch.nn.functional as F

import cv2

# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        if d.shape[0] == 0:
            return 0
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = get_world_size()
    if world_size == 1:
        return [data]

    # serialized to a Tensor
    buffer = pickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to("cuda")

    # obtain Tensor size of each rank
    local_size = torch.tensor([tensor.numel()], device="cuda")
    size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
    dist.all_gather(size_list, local_size)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    # receiving Tensor from all ranks
    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    tensor_list = []
    for _ in size_list:
        tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
    if local_size != max_size:
        padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
        tensor = torch.cat((tensor, padding), dim=0)
    dist.all_gather(tensor_list, tensor)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))

    return data_list


def reduce_dict(input_dict, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that all processes
    have the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.all_reduce(values)
        if average:
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            # print(name, str(meter))
            # import ipdb;ipdb.set_trace()
            if meter.count > 0:
                loss_str.append(
                    "{}: {}".format(name, str(meter))
                )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None, logger=None):
        if logger is None:
            print_func = print
        else:
            print_func = logger.info

        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        if torch.cuda.is_available():
            log_msg = self.delimiter.join([
                header,
                '[{0' + space_fmt + '}/{1}]',
                'eta: {eta}',
                '{meters}',
                'time: {time}',
                'data: {data}',
                'max mem: {memory:.0f}'
            ])
        else:
            log_msg = self.delimiter.join([
                header,
                '[{0' + space_fmt + '}/{1}]',
                'eta: {eta}',
                '{meters}',
                'time: {time}',
                'data: {data}'
            ])
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj

            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print_func(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print_func(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print_func('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


def get_sha():
    cwd = os.path.dirname(os.path.abspath(__file__))

    def _run(command):
        return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
    sha = 'N/A'
    diff = "clean"
    branch = 'N/A'
    try:
        sha = _run(['git', 'rev-parse', 'HEAD'])
        subprocess.check_output(['git', 'diff'], cwd=cwd)
        diff = _run(['git', 'diff-index', 'HEAD'])
        diff = "has uncommited changes" if diff else "clean"
        branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
    except Exception:
        pass
    message = f"sha: {sha}, status: {diff}, branch: {branch}"
    return message




def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
    if 'WORLD_SIZE' in os.environ and os.environ['WORLD_SIZE'] != '': # 'RANK' in os.environ and 
        # args.rank = int(os.environ["RANK"])
        # args.world_size = int(os.environ['WORLD_SIZE'])
        # args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])

        # launch by torch.distributed.launch
        # Single node
        #   python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
        # Multi nodes
        #   python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
        #   python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
        local_world_size = int(os.environ['WORLD_SIZE'])
        args.world_size = args.world_size * local_world_size
        args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
        args.rank = args.rank * local_world_size + args.local_rank
        print('world size: {}, rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank))
        print(json.dumps(dict(os.environ), indent=2))
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.local_rank = int(os.environ['SLURM_LOCALID'])
        args.world_size = int(os.environ['SLURM_NPROCS'])

        print('world size: {}, world rank: {}, local rank: {}, device_count: {}'.format(args.world_size, args.rank, args.local_rank, torch.cuda.device_count()))
    else:
        print('Not using distributed mode')
        args.distributed = False
        args.world_size = 1
        args.rank = 0
        args.local_rank = 0
        return

    print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank))
    args.distributed = True
    torch.cuda.set_device(args.local_rank)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    print("Before torch.distributed.barrier()")
    torch.distributed.barrier()
    print("End torch.distributed.barrier()")
    setup_for_distributed(args.rank == 0)


def masks_to_boxes(masks):
    """Compute the bounding boxes around the provided masks

    The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.

    Returns a [N, 4] tensors, with the boxes in xyxy format
    """
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device)
    
    h, w = masks.shape[-2:]

    y = torch.arange(0, h, dtype=torch.float)
    x = torch.arange(0, w, dtype=torch.float)
    y, x = torch.meshgrid(y, x)
    y = y.to(masks)
    x = x.to(masks)

    x_mask = ((masks>128) * x.unsqueeze(0))
    x_max = x_mask.flatten(1).max(-1)[0]
    x_min = x_mask.masked_fill(~(masks>128), 1e8).flatten(1).min(-1)[0]

    y_mask = ((masks>128) * y.unsqueeze(0))
    y_max = y_mask.flatten(1).max(-1)[0]
    y_min = y_mask.masked_fill(~(masks>128), 1e8).flatten(1).min(-1)[0]

    return torch.stack([x_min, y_min, x_max, y_max], 1)


def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(-1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=-1)


def box_xyxy_to_cxcywh(x):
    x0, y0, x1, y1 = x.unbind(-1)
    b = [(x0 + x1) / 2, (y0 + y1) / 2,
         (x1 - x0), (y1 - y0)]
    return torch.stack(b, dim=-1)

def box_noise(boxes, box_noise_scale=0):
    
    known_bbox_expand = box_xyxy_to_cxcywh(boxes)
    
    diff = torch.zeros_like(known_bbox_expand)
    diff[:, :2] = known_bbox_expand[:, 2:] / 2
    diff[:, 2:] = known_bbox_expand[:, 2:]
    known_bbox_expand += torch.mul((torch.rand_like(known_bbox_expand) * 2 - 1.0),diff).cuda() * box_noise_scale
    boxes = box_cxcywh_to_xyxy(known_bbox_expand)
    boxes = boxes.clamp(min=0.0, max=1024)

    return boxes

def masks_sample_points(masks,k=10):
    """Sample points on mask
    """
    if masks.numel() == 0:
        return torch.zeros((0, 2), device=masks.device)
    
    h, w = masks.shape[-2:]

    y = torch.arange(0, h, dtype=torch.float)
    x = torch.arange(0, w, dtype=torch.float)
    y, x = torch.meshgrid(y, x)
    y = y.to(masks)
    x = x.to(masks)

    # k = 10
    samples = []
    for b_i in range(len(masks)):
        select_mask = (masks[b_i]>128)
        x_idx = torch.masked_select(x,select_mask)
        y_idx = torch.masked_select(y,select_mask)
        
        perm = torch.randperm(x_idx.size(0))
        idx = perm[:k]
        samples_x = x_idx[idx]
        samples_y = y_idx[idx]
        samples_xy = torch.cat((samples_x[:,None],samples_y[:,None]),dim=1)
        samples.append(samples_xy)

    samples = torch.stack(samples)
    return samples


# Add noise to mask input
# From Mask Transfiner https://github.com/SysCV/transfiner
def masks_noise(masks):
    def get_incoherent_mask(input_masks, sfact):
        mask = input_masks.float()
        w = input_masks.shape[-1]
        h = input_masks.shape[-2]
        mask_small = F.interpolate(mask, (h//sfact, w//sfact), mode='bilinear')
        mask_recover = F.interpolate(mask_small, (h, w), mode='bilinear')
        mask_residue = (mask - mask_recover).abs()
        mask_residue = (mask_residue >= 0.01).float()
        return mask_residue
    gt_masks_vector = masks / 255
    mask_noise = torch.randn(gt_masks_vector.shape, device= gt_masks_vector.device) * 1.0
    inc_masks = get_incoherent_mask(gt_masks_vector,  8)
    gt_masks_vector = ((gt_masks_vector + mask_noise * inc_masks) > 0.5).float()
    gt_masks_vector = gt_masks_vector * 255

    return gt_masks_vector


def mask_iou(pred_label,label):
    '''
    calculate mask iou for pred_label and gt_label
    '''

    pred_label = (pred_label>0)[0].int()
    label = (label>128)[0].int()

    intersection = ((label * pred_label) > 0).sum()
    union = ((label + pred_label) > 0).sum()
    return intersection / union



# General util function to get the boundary of a binary mask.
# https://gist.github.com/bowenc0221/71f7a02afee92646ca05efeeb14d687d
def mask_to_boundary(mask, dilation_ratio=0.02):
    """
    Convert binary mask to boundary mask.
    :param mask (numpy array, uint8): binary mask
    :param dilation_ratio (float): ratio to calculate dilation = dilation_ratio * image_diagonal
    :return: boundary mask (numpy array)
    """
    h, w = mask.shape
    img_diag = np.sqrt(h ** 2 + w ** 2)
    dilation = int(round(dilation_ratio * img_diag))
    if dilation < 1:
        dilation = 1
    # Pad image so mask truncated by the image border is also considered as boundary.
    new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
    kernel = np.ones((3, 3), dtype=np.uint8)
    new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation)
    mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1]
    # G_d intersects G in the paper.
    return mask - mask_erode


def boundary_iou(gt, dt, dilation_ratio=0.02):
    """
    Compute boundary iou between two binary masks.
    :param gt (numpy array, uint8): binary mask
    :param dt (numpy array, uint8): binary mask
    :param dilation_ratio (float): ratio to calculate dilation = dilation_ratio * image_diagonal
    :return: boundary iou (float)
    """
    device = gt.device
    dt = (dt>0)[0].cpu().byte().numpy()
    gt = (gt>128)[0].cpu().byte().numpy()

    gt_boundary = mask_to_boundary(gt, dilation_ratio)
    dt_boundary = mask_to_boundary(dt, dilation_ratio)
    intersection = ((gt_boundary * dt_boundary) > 0).sum()
    union = ((gt_boundary + dt_boundary) > 0).sum()
    boundary_iou = intersection / union
    return torch.tensor(boundary_iou).float().to(device)