File size: 40,013 Bytes
56bd2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import json
import warnings

from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN

from cubercnn.data.build import build_detection_train_loader
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_512 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_384 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_224 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_11m_224 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_5m_224 in registry")

# Copyright (c) Meta Platforms, Inc. and affiliates
from contextlib import ExitStack
import logging
import os
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.evaluation.evaluator import inference_context
from detectron2.utils.visualizer import Visualizer
from matplotlib import pyplot as plt
import numpy as np
import torch
import datetime
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import (
    default_argument_parser, 
    default_setup, 
)
from detectron2.utils.logger import setup_logger
import torch.nn as nn
from tqdm import tqdm
import pickle

from ProposalNetwork.utils.utils import show_mask2
from cubercnn.data.dataset_mapper import DatasetMapper3D
from cubercnn.evaluation.omni3d_evaluation import instances_to_coco_json

logger = logging.getLogger("cubercnn")

from cubercnn.config import get_cfg_defaults
from cubercnn.data import (
    build_detection_test_loader,
    simple_register
)
from cubercnn.evaluation import (
    Omni3DEvaluationHelper,
)
from cubercnn.modeling.meta_arch import build_model
from cubercnn import util, vis, data
# even though this import is unused, it initializes the backbone registry
from cubercnn.modeling.backbone import build_dla_from_vision_fpn_backbone

from matplotlib.patches import PathPatch
from matplotlib.path import Path

def create_striped_patch(ax, x_start, x_end, color, alpha=0.3):
    ylim = ax.get_ylim()
    stripe_height = (ylim[1] - ylim[0]) / 20  # Adjust stripe height as needed
    vertices = []
    codes = []
    for y in np.arange(ylim[0], ylim[1], stripe_height * 2):
        vertices.extend([(x_start, y), (x_end, y + stripe_height), (x_end, y + stripe_height * 2), (x_start, y + stripe_height)])
        codes.extend([Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO])
    path = Path(vertices, codes)
    patch = PathPatch(path, facecolor=color, edgecolor='none', alpha=alpha, hatch='/')
    ax.add_patch(patch)

color_palette = ['#008dff','#ff73bf','#c701ff','#4ecb8d','#ff9d3a','#f0c571','#384860','#d83034']

def inference_on_dataset(model, data_loader, experiment_type, proposal_function):
    """
    Run model on the data_loader. 
    Also benchmark the inference speed of `model.__call__` accurately.
    The model will be used in eval mode.

    Args:
        model (callable): a callable which takes an object from
            `data_loader` and returns some outputs.

            If it's an nn.Module, it will be temporarily set to `eval` mode.
            If you wish to evaluate a model in `training` mode instead, you can
            wrap the given model and override its behavior of `.eval()` and `.train()`.
        data_loader: an iterable object with a length.
            The elements it generates will be the inputs to the model.

    Returns:
        The return value of `evaluator.evaluate()`
    """
    
    logger.info("Start inference on {} batches".format(len(data_loader)))

    total = len(data_loader)  # inference data loader must have a fixed length

    inference_json = []

    with ExitStack() as stack:
        if isinstance(model, nn.Module):
            stack.enter_context(inference_context(model))
        stack.enter_context(torch.no_grad())

        for idx, inputs in tqdm(enumerate(data_loader), desc="Average Precision", total=total):
            outputs = model(inputs, experiment_type, proposal_function)
            for input, output in zip(inputs, outputs):

                prediction = {
                    "image_id": input["image_id"],
                    "K": input["K"],
                    "width": input["width"],
                    "height": input["height"],
                }

                # convert to json format
                instances = output["instances"].to('cpu')
                # instances = output["instances"].to('cpu')
                prediction["instances"] = instances_to_coco_json(instances, input["image_id"])

                # store in overall predictions
                inference_json.append(prediction)

    return inference_json

def percent_of_boxes(model, data_loader, experiment_type, proposal_functions):
    '''make the detection that have a certain 3D IoU score plots
    if you give the proposal function as input to argparser as:
    
    `PLOT.PROPOSAL_FUNC, ['random', 'z', 'xy', 'dim', 'rotation', 'aspect' ,'full']`
    
    it will work
    '''
    total = len(data_loader)  # inference data loader must have a fixed length
    torch.set_float32_matmul_precision('high')

    with ExitStack() as stack:
        if isinstance(model, nn.Module):
            stack.enter_context(inference_context(model))
        stack.enter_context(torch.no_grad())

        # if not os.path.exists('ProposalNetwork/output/outputs.pkl'):
        if True:
            outputs = []
            for i, inputs in tqdm(enumerate(data_loader), desc=f"IoU3D plots, proposal method: {proposal_functions}", total=total):
                output = model(inputs, experiment_type, proposal_functions)
                outputs.append(output.cpu().numpy())
        #     with open('ProposalNetwork/output/outputs.pkl', 'wb') as f:
        #         pickle.dump(outputs, f)
        # else:
        #     with open('ProposalNetwork/output/outputs_10k.pkl', 'rb') as f:
        #         outputs = pickle.load(f)
        xlim = [0.2,1]
        IoUat = [0.25, 0.4, 0.6]
        n_proposals = outputs[0].shape[-1]
        
        fig, axes = plt.subplots(1, figsize=(7.5,5))
        fig2, axes2 = plt.subplots(1, len(IoUat), figsize=(20,5))
        axes.set_ylabel('Detection rate')
        axes.set_ylim([0,1])
        axes.grid(True)
        axes.set_xlabel('3D Intersection over Union')
        axes.set_xlim(xlim)
        axes.set_title(f'Varying proposal method, {n_proposals} proposals')
        for Iou, ax in zip(IoUat, axes2):
            ax.set_ylabel('Detection rate')
            ax.set_ylim([0,1])
            ax.grid(True)
            ax.set_title(f'Variants, IoU3D = {Iou}')
            ax.set_xlim([1,n_proposals])
            ax.set_xlabel('Number of Proposals')

        for k, proposal_function in enumerate(proposal_functions):
            IoU3Ds = np.concatenate([x[:,k,:] for x in outputs])
            maxIOU_per_instance = np.max(IoU3Ds, axis=1)
            np.random.shuffle(IoU3Ds.T) #transpose to shuffle along the proposal axis
            # detection rate vs. IoU3D
            thresholds = np.arange(xlim[0],xlim[1],0.025)
            detection_rate = np.zeros(len(thresholds))
            for i in range(len(thresholds)):
                detection_rate[i] = np.mean(maxIOU_per_instance > thresholds[i],axis=0)

            # detection rate vs. no. of proposals
            detection_rates = np.zeros((len(IoUat), IoU3Ds.shape[1]))
            for i, IoU in enumerate(IoUat):
                mask_positive_values = IoU3Ds >= IoU
                first_above_threshold = np.argmax(mask_positive_values, axis=1)
                any_above_threshold = mask_positive_values.any(axis=1)
                detection_rate_at_IoU = np.zeros_like(IoU3Ds)

                for j in range(IoU3Ds.shape[0]):
                    if any_above_threshold[j]:
                        detection_rate_at_IoU[j, :first_above_threshold[j]] = 0
                        detection_rate_at_IoU[j, first_above_threshold[j]:] = 1
                
                detection_rates[i] = np.mean(detection_rate_at_IoU, axis=0)

            axes.plot(thresholds, detection_rate, label=f'{proposal_function}', color=color_palette[k])
            for j, ax in enumerate(axes2):
                ax.semilogx(list(range(1, n_proposals+1)), detection_rates[j], label=f'{proposal_function}', color=color_palette[k])
    for ax in axes2:
        ax.legend()
    axes.legend()
    print("saved to 'ProposalNetwork/output/'")
    fig.savefig(f'ProposalNetwork/output/detection_rate_{n_proposals}.png', dpi=300, bbox_inches='tight')
    fig2.savefig(f'ProposalNetwork/output/IoU_varying_{n_proposals}.png', dpi=300, bbox_inches='tight')


    return
            

def mean_average_best_overlap(model, data_loader, experiment_type, proposal_function):
        
    total = len(data_loader)  # inference data loader must have a fixed length
    os.makedirs('output/pkl_files', exist_ok=True)
    with ExitStack() as stack:
        if isinstance(model, nn.Module):
            stack.enter_context(inference_context(model))
        stack.enter_context(torch.no_grad())

        outputs = []
        for i, inputs in tqdm(enumerate(data_loader), desc="Mean average best overlap plots", total=total):
            logger.info('iteration %s',i)
            output = model(inputs, experiment_type, proposal_function)
            # p_info, IoU3D, score_IoU2D, score_seg, score_dim, score_combined, score_random, score_point_cloud, stat_empty_boxes, stats_im, stats_off
            if output is not None:
                outputs.append(output)
        with open('output/pkl_files/outputs_'+str(proposal_function)+'.pkl', 'wb') as f:
            pickle.dump(outputs, f)

        # Create output folder
        if not os.path.exists('ProposalNetwork/output/MABO_'+str(proposal_function)):
            os.makedirs('ProposalNetwork/output/MABO_'+str(proposal_function)) # This is maybe unnecessary
            os.makedirs('ProposalNetwork/output/MABO_'+str(proposal_function)+'/vis/')

        # mean over all the outputs
        Iou2D             = np.concatenate([np.array(sublist) for sublist in (x[1] for x in outputs)])
        score_seg         = np.concatenate([np.array(sublist) for sublist in (x[2] for x in outputs)])
        score_dim         = np.concatenate([np.array(sublist) for sublist in (x[3] for x in outputs)])
        score_combined    = np.concatenate([np.array(sublist) for sublist in (x[4] for x in outputs)])
        score_random      = np.concatenate([np.array(sublist) for sublist in (x[5] for x in outputs)])
        score_point_cloud = np.concatenate([np.array(sublist) for sublist in (x[6] for x in outputs)])
        score_seg_mod     = np.concatenate([np.array(sublist) for sublist in (x[10] for x in outputs)])
        score_corners     = np.concatenate([np.array(sublist) for sublist in (x[11] for x in outputs)])
        stat_empty_boxes  = np.array([x[7] for x in outputs])
        combinations      = np.mean(np.concatenate([np.array(sublist) for sublist in (x[12] for x in outputs)]),axis=0)
        #logger.info('Percentage of cubes with no intersection:',np.mean(stat_empty_boxes))
        print('Percentage of cubes with no intersection:',np.mean(stat_empty_boxes))
        logger.info('combination scores:%s',combinations)
        #print('combination scores:',combinations)
        print('best combination is C'+str(np.argmax(combinations)+1))

        

        Iou2D = Iou2D.mean(axis=0)
        score_seg = score_seg.mean(axis=0)
        score_dim = score_dim.mean(axis=0)
        score_combined = score_combined.mean(axis=0)
        score_random = score_random.mean(axis=0)
        score_point_cloud = score_point_cloud.mean(axis=0)
        score_seg_mod = score_seg_mod.mean(axis=0)
        score_corners = score_corners.mean(axis=0)
        total_num_instances = np.sum([x[0].gt_boxes3D.shape[0] for x in outputs])
        
        print('Avg IoU of chosen cube:', score_combined[0])
        print('Best possible IoU:', score_combined[-1])

        x_range = np.arange(1,1001)
        plt.figure(figsize=(8,5))
        plt.plot(x_range,score_combined, linestyle='-',c=color_palette[6], label='combined') 
        plt.plot(x_range,score_dim, linestyle='-',c=color_palette[5],label='dim') 
        plt.plot(x_range,score_seg, linestyle='-',c=color_palette[2],label='segment')
        plt.plot(x_range,Iou2D, linestyle='-',c=color_palette[4],label='2D IoU') 
        plt.plot(x_range,score_corners, linestyle='-',c=color_palette[7],label='corner dist')
        plt.plot(x_range,score_random, linestyle='-',c='grey',label='random') 
        plt.plot(x_range,score_point_cloud, linestyle='-',c=color_palette[3],label='point cloud')
        plt.plot(x_range,score_seg_mod, linestyle='-',c=color_palette[0],label='mod segment')
        plt.grid(True)
        plt.xscale('log')
        plt.xticks([1, 10, 100, 1000], ['1', '10', '100', '1000'])
        plt.xlim(left=1, right=len(Iou2D))
        plt.xlabel('Number of Proposals')
        plt.ylabel('3D IoU')
        plt.legend()
        plt.title('Average Best Overlap vs Number of Proposals ({} images, {} instances)'.format(1+i,total_num_instances))
        f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function), 'MABO_'+str(proposal_function)+'.png')
        plt.savefig(f_name, dpi=300, bbox_inches='tight')
        plt.close()
        #logger.info('saved to ', f_name)
        print('saved to ', f_name)
        
        # Statistics
        stats = torch.cat([x[8] for x in outputs],dim=0)
        num_bins = 40
        titles = ['x','y','z']
        plt.figure(figsize=(15, 5))
        plt.suptitle("Distribution of Ground Truths in Normalised Searched Range", fontsize=20)
        for i,title in enumerate(titles):
            ax = plt.subplot(1, 3, 1+i)
            plt.hist(stats[:,i].numpy(), bins=num_bins, color=color_palette[6],density=True, zorder=2)
            plt.axvline(x=0, color='#97a6c4',zorder=2)
            plt.axvline(x=1, color='#97a6c4',zorder=2)
            create_striped_patch(ax, 0, 1, '#97a6c4', alpha=0.8)
            plt.title(title)
        f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function), 'stats_center_'+str(proposal_function)+'.png')
        plt.savefig(f_name, dpi=300, bbox_inches='tight')
        plt.close()
        print('saved to ', f_name)
        num_bins = 120
        plt.figure(figsize=(15, 5))
        plt.suptitle("Distribution of Ground Truths in Normalised Searched Range", fontsize=20)
        for i,title in enumerate(titles):
            ax = plt.subplot(1, 3, 1+i)
            plt.hist(stats[:,i].numpy(), bins=num_bins, color=color_palette[6],density=True, zorder=2)
            plt.axvline(x=0, color='#97a6c4', zorder=2)
            plt.axvline(x=1, color='#97a6c4', zorder=2)
            create_striped_patch(ax, 0, 1, '#97a6c4', alpha=0.8)
            plt.xlim([-2,2])
            plt.title(title)
        f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function), 'stats_center_zoom_'+str(proposal_function)+'.png')
        plt.savefig(f_name, dpi=300, bbox_inches='tight')
        plt.close()
        print('saved to ', f_name)
        num_bins = 40
        titles = ['w','h','l']
        plt.figure(figsize=(15, 5))
        plt.suptitle("Distribution of Ground Truths in Normalised Searched Range", fontsize=20)
        for i,title in enumerate(titles):
            ax = plt.subplot(1, 3, 1+i)
            plt.hist(stats[:,3+i].numpy(), bins=num_bins, color=color_palette[6],density=True, zorder=2)
            plt.axvline(x=0, color='#97a6c4', zorder=2)
            plt.axvline(x=1, color='#97a6c4', zorder=2)
            create_striped_patch(ax, 0, 1, '#97a6c4', alpha=0.8)
            plt.title(title)
        f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function), 'stats_dim_'+str(proposal_function)+'.png')
        plt.savefig(f_name, dpi=300, bbox_inches='tight')
        plt.close()
        print('saved to ', f_name)
        titles = ['rx','ry','rz']
        plt.figure(figsize=(15, 5))
        plt.suptitle("Distribution of Ground Truths in Normalised Searched Range", fontsize=20)
        for i,title in enumerate(titles):
            ax = plt.subplot(1, 3, 1+i)
            plt.hist(stats[:,6+i].numpy(), bins=num_bins, color=color_palette[6],density=True, zorder=2)
            plt.axvline(x=0, color='#97a6c4', zorder=2)
            plt.axvline(x=1, color='#97a6c4', zorder=2)
            create_striped_patch(ax, 0, 1, '#97a6c4', alpha=0.8)
            plt.title(title)
        f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function), 'stats_rot_'+str(proposal_function)+'.png')
        plt.savefig(f_name, dpi=300, bbox_inches='tight')
        plt.close()
        print('saved to ', f_name)

        stats_off = np.concatenate([np.array(sublist) for sublist in (x[9] for x in outputs)])
        plt.figure(figsize=(15, 15))
        for i,title in enumerate(titles):
            plt.subplot(3, 3, 1+i)
            plt.scatter(stats_off[:,1+i],stats_off[:,0], color=color_palette[6])
            plt.title(title)
        f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function), 'stats_off_'+str(proposal_function)+'.png')
        plt.savefig(f_name, dpi=300, bbox_inches='tight')
        plt.close()
        #logger.info('saved to ', f_name)
        print('saved to ', f_name)

        plt.figure(figsize=(15, 15))
        for i,title in enumerate(titles):
            plt.subplot(3, 3, 1+i)
            plt.scatter(stats_off[:,1+i],stats_off[:,0], color=color_palette[6])
            plt.title(title)
            plt.xlim([0,2])
            plt.ylim([0,1])
        f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function), 'stats_off_zoom_'+str(proposal_function)+'.png')
        plt.savefig(f_name, dpi=300, bbox_inches='tight')
        plt.close()
        #logger.info('saved to ', f_name)
        print('saved to ', f_name)
        
        # ## for vis
        d_iter = iter(data_loader)
        for i , _ in tqdm(enumerate(outputs), desc="Plotting every single image", total=len(outputs)):
            p_info = outputs[i][0]
            pred_box_classes_names = [util.MetadataCatalog.get('omni3d_model').thing_classes[label] for label in p_info.pred_cubes.labels.cpu().numpy()]
            box_size = p_info.pred_cubes.num_instances
            for x in range(box_size-len(pred_box_classes_names)):
                pred_box_classes_names.append(f'z={p_info.pred_cubes[x].dimensions[2]}, s={p_info.pred_cubes[x].scores}')
            colors = [np.concatenate([np.random.random(3), np.array([0.6])], axis=0) for _ in range(box_size)]
            fig, (ax, ax1) = plt.subplots(2,1, figsize=(14, 10))
            input = next(d_iter)[0]
            images_raw = input['image']
            
            org_img = convert_image_to_rgb(images_raw.permute(1,2,0).cpu().numpy(), 'BGR').copy()
            v_pred = Visualizer(org_img, None)
            v_pred = v_pred.overlay_instances(
                boxes=p_info.pred_boxes[0:box_size].tensor.cpu().numpy()
                , assigned_colors=colors
            )
            prop_img = v_pred.get_image()
            pred_cube_meshes = [p_info.pred_cubes[j].get_cubes().__getitem__(0).detach() for j in range(box_size)]
            img_3DPR, img_novel, _ = vis.draw_scene_view(prop_img, p_info.K, pred_cube_meshes, text=pred_box_classes_names, blend_weight=0.5, blend_weight_overlay=0.85,scale = prop_img.shape[0],colors=colors)
            vis_img_3d = img_3DPR.astype(np.uint8)
            vis_img_3d = show_mask2(p_info.mask_per_image.cpu().numpy(), vis_img_3d, random_color=colors) # NOTE Uncomment to add segmentation mask to pred image
            #vis_img_3d = np.concatenate((vis_img_3d, np.zeros((vis_img_3d.shape[0],vis_img_3d.shape[1],1))), axis=-1)
            ax.set_title('Predicted')
            # expand_img_novel to have alpha channel
            img_novel = np.concatenate((img_novel, np.ones_like(img_novel[:,:,0:1])*255), axis=-1)/255
            ax.imshow(np.concatenate((vis_img_3d, img_novel), axis=1))
            box_size = len(p_info.gt_cube_meshes)
            v_pred = Visualizer(org_img, None)
            v_pred = v_pred.overlay_instances(boxes=p_info.gt_boxes[0:box_size].tensor.cpu().numpy(), assigned_colors=colors)
            prop_img = v_pred.get_image()
            gt_box_classes_names = [util.MetadataCatalog.get('omni3d_model').thing_classes[i] for i in p_info.gt_box_classes]
            img_3DPR, img_novel, _ = vis.draw_scene_view(prop_img, p_info.K, p_info.gt_cube_meshes,text=gt_box_classes_names, blend_weight=0.5, blend_weight_overlay=0.85,scale = prop_img.shape[0],colors=colors)
            vis_img_3d = img_3DPR.astype(np.uint8)
            im_concat = np.concatenate((vis_img_3d, img_novel), axis=1)
            ax1.set_title('GT')
            ax1.imshow(im_concat)
            f_name = os.path.join('ProposalNetwork/output/MABO_'+str(proposal_function)+'/vis/', f'vis_{i}.png')
            plt.savefig(f_name, dpi=300, bbox_inches='tight')
            plt.close()

            # with open(f'ProposalNetwork/output/MABO/vis/out_{i}.pkl', 'wb') as f:
            #     out = images_raw.permute(1,2,0).cpu().numpy(), K, p_info.mask_per_image.cpu().numpy(), p_info.gt_boxes3D, p_info.gt_boxes[0], pred_box_classes_names
            #     # im, K, mask, gt_boxes3D, gt_boxes, pred_box_classes_names
            #     pickle.dump(out, f)




def do_test(cfg, model, iteration='final', storage=None):
        
    filter_settings = data.get_filter_settings_from_cfg(cfg)    
    filter_settings['visibility_thres'] = cfg.TEST.VISIBILITY_THRES
    filter_settings['truncation_thres'] = cfg.TEST.TRUNCATION_THRES
    filter_settings['min_height_thres'] = 0.0625
    filter_settings['max_depth'] = 1e8

    dataset_names_test = cfg.DATASETS.TEST
    only_2d = cfg.MODEL.ROI_CUBE_HEAD.LOSS_W_3D == 0.0
    output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", 'iter_{}'.format(iteration))

 
    for dataset_name in dataset_names_test:
        """
        Cycle through each dataset and test them individually.
        This loop keeps track of each per-image evaluation result, 
        so that it doesn't need to be re-computed for the collective.
        """

        '''
        Distributed Cube R-CNN inference
        '''
        dataset_paths = [os.path.join('datasets', 'Omni3D', name + '.json') for name in cfg.DATASETS.TEST]
        datasets = data.Omni3D(dataset_paths, filter_settings=filter_settings)

        # determine the meta data given the datasets used. 
        data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)

        thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
        dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
        
        infos = datasets.dataset['info']

        if type(infos) == dict:
            infos = [datasets.dataset['info']]

        dataset_id_to_unknown_cats = {}
        possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
        
        dataset_id_to_src = {}

        for info in infos:
            dataset_id = info['id']
            known_category_training_ids = set()

            if not dataset_id in dataset_id_to_src:
                dataset_id_to_src[dataset_id] = info['source']

            for id in info['known_category_ids']:
                if id in dataset_id_to_contiguous_id:
                    known_category_training_ids.add(dataset_id_to_contiguous_id[id])
            
            # determine and store the unknown categories.
            unknown_categories = possible_categories - known_category_training_ids
            dataset_id_to_unknown_cats[dataset_id] = unknown_categories


        # we need the dataset mapper to get 
        data_mapper = DatasetMapper3D(cfg, is_train=False, mode='get_depth_maps')
        data_mapper.dataset_id_to_unknown_cats = dataset_id_to_unknown_cats

        data_loader = build_detection_test_loader(cfg, dataset_name, mapper=data_mapper, batch_size=cfg.SOLVER.IMS_PER_BATCH, num_workers=4)

        experiment_type = {}

        if cfg.PLOT.EVAL == 'MABO': experiment_type['output_recall_scores'] = True
        else: experiment_type['output_recall_scores'] = False
        # either use pred_boxes or GT boxes
        if cfg.PLOT.MODE2D == 'PRED': experiment_type['use_pred_boxes'] = True
        else: experiment_type['use_pred_boxes'] = False
        if cfg.PLOT.SCORING_FUNC == False:
            experiment_type['scoring_func'] = False
        # define proposal function to use
        if experiment_type['output_recall_scores']:
            _ = mean_average_best_overlap(model, data_loader, experiment_type, cfg.PLOT.PROPOSAL_FUNC)
        elif not cfg.PLOT.SCORING_FUNC:
            _ = percent_of_boxes(model, data_loader, experiment_type, cfg.PLOT.PROPOSAL_FUNC)
        else:
            results_json = inference_on_dataset(model, data_loader, experiment_type, cfg.PLOT.PROPOSAL_FUNC)

            eval_helper = Omni3DEvaluationHelper(
                dataset_names_test, 
                filter_settings, 
                output_folder, 
                iter_label=iteration,
                only_2d=only_2d,
            )
            '''
            Individual dataset evaluation
            '''
            eval_helper.add_predictions(dataset_name, results_json)
            eval_helper.save_predictions(dataset_name)
            eval_helper.evaluate(dataset_name)

            '''
            Optionally, visualize some instances
            '''
            instances = torch.load(os.path.join(output_folder, dataset_name, 'instances_predictions.pth'))
            log_str = vis.visualize_from_instances(
                instances, data_loader.dataset, dataset_name, 
                cfg.INPUT.MIN_SIZE_TEST, os.path.join(output_folder, dataset_name), 
                MetadataCatalog.get('omni3d_model').thing_classes, iteration, visualize_every=1
            )
            logger.info(log_str)

        
    if cfg.PLOT.EVAL == 'AP':
        '''
        Summarize each Omni3D Evaluation metric
        '''  
        eval_helper.summarize_all()

def do_train(cfg, model):
    """
    Run model on the data_loader. 
    Also benchmark the inference speed of `model.__call__` accurately.
    The model will be used in train mode.

    Args:
        model (callable): a callable which takes an object from
            `data_loader` and returns some outputs.

            If it's an nn.Module, it will be temporarily set to `eval` mode.
            If you wish to evaluate a model in `training` mode instead, you can
            wrap the given model and override its behavior of `.eval()` and `.train()`.
        data_loader: an iterable object with a length.
            The elements it generates will be the inputs to the model.

    Returns:
        The return value of `evaluator.evaluate()`
    """

    filter_settings = data.get_filter_settings_from_cfg(cfg)

    # setup and join the data.
    dataset_paths = [os.path.join('datasets', 'Omni3D', name + '.json') for name in cfg.DATASETS.TRAIN]
    datasets = data.Omni3D(dataset_paths, filter_settings=filter_settings)

    # determine the meta data given the datasets used. 
    data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)

    thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
    dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
    
    '''
    It may be useful to keep track of which categories are annotated/known
    for each dataset in use, in case a method wants to use this information.
    '''

    infos = datasets.dataset['info']

    if type(infos) == dict:
        infos = [datasets.dataset['info']]

    dataset_id_to_unknown_cats = {}
    possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
    
    dataset_id_to_src = {}

    for info in infos:
        dataset_id = info['id']
        known_category_training_ids = set()

        if not dataset_id in dataset_id_to_src:
            dataset_id_to_src[dataset_id] = info['source']

        for id in info['known_category_ids']:
            if id in dataset_id_to_contiguous_id:
                known_category_training_ids.add(dataset_id_to_contiguous_id[id])
        
        # determine and store the unknown categories.
        unknown_categories = possible_categories - known_category_training_ids
        dataset_id_to_unknown_cats[dataset_id] = unknown_categories

    # we need the dataset mapper to get 
    dataset_names = cfg.DATASETS.TRAIN
    data_mapper = DatasetMapper3D(cfg, is_train=False, mode='get_depth_maps')
    data_mapper.dataset_id_to_unknown_cats = dataset_id_to_unknown_cats
    assert cfg.TRAIN.pseudo_gt in ['learn', 'pseudo'], "control what kind of proposal should be saved by setting TRAIN.pseudo_gt to either 'learn' or 'pseudo'"
    experiment_type = {}
    experiment_type['use_pred_boxes'] = cfg.PLOT.MODE2D if cfg.PLOT.MODE2D != '' else False
    experiment_type['pseudo_gt'] = cfg.TRAIN.pseudo_gt
    os.makedirs(f'datasets/proposals_{cfg.TRAIN.pseudo_gt}',exist_ok=True)

    # lol I think we have to hardcode this part in
    
    dataset_json = {}
    dataset_json.update({"categories": [{"supercategory": "nan", "id": 18, "name": "chair"}, {"supercategory": "nan", "id": 31, "name": "door"}, {"supercategory": "nan", "id": 37, "name": "table"}, {"supercategory": "nan", "id": 26, "name": "shelves"}, {"supercategory": "nan", "id": 51, "name": "kitchen pan"}, {"supercategory": "nan", "id": 52, "name": "bin"}, {"supercategory": "nan", "id": 38, "name": "counter"}, {"supercategory": "nan", "id": 29, "name": "cabinet"}, {"supercategory": "nan", "id": 53, "name": "stove"}, {"supercategory": "nan", "id": 28, "name": "sink"}, {"supercategory": "nan", "id": 14, "name": "books"}, {"supercategory": "nan", "id": 49, "name": "refrigerator"}, {"supercategory": "nan", "id": 54, "name": "microwave"}, {"supercategory": "nan", "id": 15, "name": "bottle"}, {"supercategory": "nan", "id": 55, "name": "plates"}, {"supercategory": "nan", "id": 56, "name": "bowl"}, {"supercategory": "nan", "id": 57, "name": "oven"}, {"supercategory": "nan", "id": 58, "name": "vase"}, {"supercategory": "nan", "id": 59, "name": "faucet"}, {"supercategory": "nan", "id": 22, "name": "towel"}, {"supercategory": "nan", "id": 60, "name": "tissues"}, {"supercategory": "nan", "id": 61, "name": "machine"}, {"supercategory": "nan", "id": 62, "name": "printer"}, {"supercategory": "nan", "id": 33, "name": "desk"}, {"supercategory": "nan", "id": 63, "name": "monitor"}, {"supercategory": "nan", "id": 64, "name": "podium"}, {"supercategory": "nan", "id": 35, "name": "bookcase"}, {"supercategory": "nan", "id": 41, "name": "dresser"}, {"supercategory": "nan", "id": 65, "name": "cart"}, {"supercategory": "nan", "id": 66, "name": "projector"}, {"supercategory": "nan", "id": 67, "name": "electronics"}, {"supercategory": "nan", "id": 68, "name": "computer"}, {"supercategory": "nan", "id": 34, "name": "box"}, {"supercategory": "nan", "id": 36, "name": "picture"}, {"supercategory": "nan", "id": 20, "name": "laptop"}, {"supercategory": "nan", "id": 42, "name": "pillow"}, {"supercategory": "nan", "id": 39, "name": "bed"}, {"supercategory": "nan", "id": 69, "name": "air conditioner"}, {"supercategory": "nan", "id": 25, "name": "lamp"}, {"supercategory": "nan", "id": 40, "name": "night stand"}, {"supercategory": "nan", "id": 50, "name": "board"}, {"supercategory": "nan", "id": 43, "name": "sofa"}, {"supercategory": "nan", "id": 71, "name": "coffee maker"}, {"supercategory": "nan", "id": 72, "name": "toaster"}, {"supercategory": "nan", "id": 73, "name": "potted plant"}, {"supercategory": "nan", "id": 48, "name": "stationery"}, {"supercategory": "nan", "id": 74, "name": "painting"}, {"supercategory": "nan", "id": 75, "name": "bag"}, {"supercategory": "nan", "id": 76, "name": "tray"}, {"supercategory": "nan", "id": 19, "name": "cup"}, {"supercategory": "nan", "id": 70, "name": "drawers"}, {"supercategory": "nan", "id": 77, "name": "keyboard"}, {"supercategory": "nan", "id": 21, "name": "shoes"}, {"supercategory": "vehicle & road", "id": 11, "name": "bicycle"}, {"supercategory": "nan", "id": 78, "name": "blanket"}, {"supercategory": "nan", "id": 44, "name": "television"}, {"supercategory": "nan", "id": 79, "name": "rack"}, {"supercategory": "nan", "id": 27, "name": "mirror"}, {"supercategory": "nan", "id": 47, "name": "clothes"}, {"supercategory": "nan", "id": 80, "name": "phone"}, {"supercategory": "nan", "id": 81, "name": "mouse"}, {"supercategory": "person", "id": 7, "name": "person"}, {"supercategory": "nan", "id": 82, "name": "fire extinguisher"}, {"supercategory": "nan", "id": 83, "name": "toys"}, {"supercategory": "nan", "id": 84, "name": "ladder"}, {"supercategory": "nan", "id": 85, "name": "fan"}, {"supercategory": "nan", "id": 32, "name": "toilet"}, {"supercategory": "nan", "id": 30, "name": "bathtub"}, {"supercategory": "nan", "id": 86, "name": "glass"}, {"supercategory": "nan", "id": 87, "name": "clock"}, {"supercategory": "nan", "id": 88, "name": "toilet paper"}, {"supercategory": "nan", "id": 89, "name": "closet"}, {"supercategory": "nan", "id": 46, "name": "curtain"}, {"supercategory": "nan", "id": 24, "name": "window"}, {"supercategory": "nan", "id": 90, "name": "fume hood"}, {"supercategory": "nan", "id": 91, "name": "utensils"}, {"supercategory": "nan", "id": 45, "name": "floor mat"}, {"supercategory": "nan", "id": 92, "name": "soundsystem"}, {"supercategory": "nan", "id": 93, "name": "fire place"}, {"supercategory": "nan", "id": 94, "name": "shower curtain"}, {"supercategory": "nan", "id": 23, "name": "blinds"}, {"supercategory": "nan", "id": 95, "name": "remote"}, {"supercategory": "nan", "id": 96, "name": "pen"}]})

    d_id_to_contiguous = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
    contiguous_to_id = {v:k for k,v in d_id_to_contiguous.items()}

    global_id = 1
    # this controls the flow of the program in the model class
    model.train()
    for dataset_name in dataset_names:
        idd = 12
        if 'val' in dataset_name:
            idd = 13
        dataset_json.update({"info": {"id": idd, "source": "SUNRGBD", "name": "SUNRGBD Train", "split": "Train", "version": "0.1", "url": "https://rgbd.cs.princeton.edu/"}})
        data_loader = build_detection_test_loader(cfg, dataset_name, mapper=data_mapper, num_workers=4)

        total = len(data_loader)  # inference data loader must have a fixed length

        annotations = []
        images = []
        for idx, inputs in tqdm(enumerate(data_loader), desc="Generating pseudo GT", total=total):
            cubes = model(inputs, experiment_type)
            instances = cubes[0]['instances']
            input_ = inputs[0]
            img_id = input_['image_id']
            input_['instances'].proposal_boxes = input_['instances'].gt_boxes
            bboxes = GeneralizedRCNN._postprocess([input_['instances']], [input_], [input_['instances']._image_size])
            bboxes = bboxes[0]['instances'].proposal_boxes
            # build json for each image
            img = {'width':input_['width'], 'height':input_['height'], 'file_path':input_['file_name'][9:], 'K':input_['K'], 'src_90_rotate':False, 'src_flagged':False, 'incomplete':False, 'id':img_id, 'dataset_id':12}
            for bbox, gt_class, center, dimensions, bbox3D, rotation in zip(bboxes, input_['instances'].gt_classes,
                                                                            instances.pred_center_cam.tolist(), instances.pred_dimensions.tolist(), 
                                                                            instances.pred_bbox3D.tolist(), instances.pred_pose.tolist()):
                c_id = util.MetadataCatalog.get('omni3d_model').thing_classes[gt_class]
                ann = {'behind_camera':False, 'truncation': 0, 'bbox2D_proj':bbox.tolist(), 'bbox2D_tight':-1, 'visibility':1.0, 'segmentation_pts':-1, 'lidar_pts':-1,\
                       'valid3D':True, 'category_id':contiguous_to_id[gt_class.tolist()], 'category_name':c_id, \
                       'id':global_id, 'image_id':img_id, 'dataset_id':idd, 'depth_error':-1, 'center_cam':center,\
                       'dimensions':dimensions, 'bbox3D_cam':bbox3D, 'R_cam':rotation}
                annotations.append(ann)
                global_id += 1

            images.append(img)

        dataset_json.update({'images':images, 'annotations':annotations})

        with open(f'datasets/Omni3D/SUNRGBD_pseudo_gt_{dataset_name}.json', 'w') as f:
            json.dump(dataset_json, f)

    return True


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    get_cfg_defaults(cfg)

    config_file = args.config_file
    
    # store locally if needed
    if config_file.startswith(util.CubeRCNNHandler.PREFIX):    
        config_file = util.CubeRCNNHandler._get_local_path(util.CubeRCNNHandler, config_file)

    cfg.merge_from_file(config_file)
    cfg.merge_from_list(args.opts)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    cfg.MODEL.DEVICE = device
    cfg.SEED = 13
    cfg.freeze()
    default_setup(cfg, args)

    setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="cubercnn")
    
    filter_settings = data.get_filter_settings_from_cfg(cfg)

    for dataset_name in cfg.DATASETS.TRAIN:
        simple_register(dataset_name, filter_settings, filter_empty=True)
    
    dataset_names_test = cfg.DATASETS.TEST

    # filter_ = True if cfg.PLOT.EVAL == 'MABO' else False
    for dataset_name in dataset_names_test:
        if not(dataset_name in cfg.DATASETS.TRAIN):
            # empties should be filtering in test normally
            simple_register(dataset_name, filter_settings, filter_empty=True)
    
    return cfg


def main(args):
    
    cfg = setup(args)

    if args.eval_only:
        assert cfg.PLOT.MODE2D in ['GT', 'PRED'], 'MODE2D must be either GT or PRED'
        assert cfg.PLOT.EVAL in ['AP', 'MABO', 'IoU3D'], 'EVAL must be either AP, MABO or IoU3D'
        if cfg.PLOT.EVAL == 'MABO':
            assert cfg.PLOT.MODE2D == 'GT', 'MABO only works with GT boxes'
    
    name = f'cube {datetime.datetime.now().isoformat()}'
    # wandb.init(project="cube", sync_tensorboard=True, name=name, config=cfg)

    priors = None
    with open('tools/priors.pkl', 'rb') as f:
        priors, _ = pickle.load(f)

    category_path = 'output/Baseline_sgd/category_meta.json'
    # category_path = os.path.join(util.file_parts(args.opts[1])[0], 'category_meta.json')
    
    # store locally if needed
    if category_path.startswith(util.CubeRCNNHandler.PREFIX):
        category_path = util.CubeRCNNHandler._get_local_path(util.CubeRCNNHandler, category_path)

    metadata = util.load_json(category_path)

    # register the categories
    thing_classes = metadata['thing_classes']
    id_map = {int(key):val for key, val in metadata['thing_dataset_id_to_contiguous_id'].items()}
    MetadataCatalog.get('omni3d_model').thing_classes = thing_classes
    MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id  = id_map


    # build the  model.
    model = build_model(cfg, priors=priors)


    if args.eval_only:
        # skip straight to eval mode
        # load the saved model if using eval boxes
        if cfg.PLOT.MODE2D == 'PRED':
            DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
                cfg.MODEL.WEIGHTS, resume=False)
        return do_test(cfg, model)
    else:
        logger.info('Making pseudo GT')
        return do_train(cfg, model)


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)

    main(args)