Spaces:
Sleeping
Sleeping
File size: 19,600 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import logging
import os
import sys
import warnings
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_512 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_384 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_224 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_11m_224 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_5m_224 in registry")
import numpy as np
import copy
from collections import OrderedDict
import pandas as pd
import torch
import datetime
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.engine import (
default_argument_parser,
default_setup,
default_writers,
launch
)
from detectron2.solver import build_lr_scheduler
from detectron2.utils.events import EventStorage
from detectron2.utils.logger import setup_logger
import wandb
logger = logging.getLogger("cubercnn")
from cubercnn.solver import build_optimizer, freeze_bn, PeriodicCheckpointerOnlyOne
from cubercnn.config import get_cfg_defaults
from cubercnn.data import (
load_omni3d_json,
DatasetMapper3D,
build_detection_train_loader,
build_detection_test_loader,
get_omni3d_categories,
simple_register
)
from cubercnn.evaluation import (
Omni3DEvaluator, Omni3Deval,
Omni3DEvaluationHelper,
inference_on_dataset
)
from cubercnn.modeling.proposal_generator import RPNWithIgnore
from cubercnn.modeling.roi_heads import ROIHeads3D
from cubercnn.modeling.meta_arch import RCNN3D, build_model
from cubercnn.modeling.backbone import build_dla_from_vision_fpn_backbone
from cubercnn import util, vis, data
import cubercnn.vis.logperf as utils_logperf
MAX_TRAINING_ATTEMPTS = 10
def do_test(cfg, model, iteration='final', storage=None):
filter_settings = data.get_filter_settings_from_cfg(cfg)
filter_settings['visibility_thres'] = cfg.TEST.VISIBILITY_THRES
filter_settings['truncation_thres'] = cfg.TEST.TRUNCATION_THRES
filter_settings['min_height_thres'] = 0.0625
filter_settings['max_depth'] = 1e8
dataset_names_test = cfg.DATASETS.TEST
only_2d = cfg.MODEL.ROI_CUBE_HEAD.LOSS_W_3D == 0.0
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", 'iter_{}'.format(iteration))
logger.info('Output folder: %s', output_folder)
eval_helper = Omni3DEvaluationHelper(
dataset_names_test,
filter_settings,
output_folder,
iter_label=iteration,
only_2d=only_2d,
)
for dataset_name in dataset_names_test:
"""
Cycle through each dataset and test them individually.
This loop keeps track of each per-image evaluation result,
so that it doesn't need to be re-computed for the collective.
"""
'''
Distributed Cube R-CNN inference
'''
data_loader = build_detection_test_loader(cfg, dataset_name,batch_size=cfg.SOLVER.IMS_PER_BATCH, num_workers=2)
results_json = inference_on_dataset(model, data_loader)
if comm.is_main_process():
'''
Individual dataset evaluation
'''
eval_helper.add_predictions(dataset_name, results_json)
eval_helper.save_predictions(dataset_name)
eval_helper.evaluate(dataset_name)
'''
Optionally, visualize some instances
'''
instances = torch.load(os.path.join(output_folder, dataset_name, 'instances_predictions.pth'))
log_str = vis.visualize_from_instances(
instances, data_loader.dataset, dataset_name,
cfg.INPUT.MIN_SIZE_TEST, os.path.join(output_folder, dataset_name),
MetadataCatalog.get('omni3d_model').thing_classes, iteration, visualize_every=1
)
logger.info(log_str)
if comm.is_main_process():
'''
Summarize each Omni3D Evaluation metric
'''
eval_helper.summarize_all()
def do_train(cfg, model, dataset_id_to_unknown_cats, dataset_id_to_src, resume=False):
max_iter = cfg.SOLVER.MAX_ITER
do_eval = cfg.TEST.EVAL_PERIOD > 0
model.train()
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
# bookkeeping
checkpointer = DetectionCheckpointer(model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler)
periodic_checkpointer = PeriodicCheckpointerOnlyOne(checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter)
writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else []
# create the dataloader
data_mapper = DatasetMapper3D(cfg, is_train=True)
data_loader = build_detection_train_loader(cfg, mapper=data_mapper, dataset_id_to_src=dataset_id_to_src, num_workers=2)
# give the mapper access to dataset_ids
data_mapper.dataset_id_to_unknown_cats = dataset_id_to_unknown_cats
if cfg.MODEL.WEIGHTS_PRETRAIN != '':
# load ONLY the model, no checkpointables.
checkpointer.load(cfg.MODEL.WEIGHTS_PRETRAIN, checkpointables=[])
# determine the starting iteration, if resuming
start_iter = (checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1)
iteration = start_iter
logger.info("Starting training from iteration {}".format(start_iter))
if not cfg.MODEL.USE_BN:
freeze_bn(model)
world_size = comm.get_world_size()
# if the loss diverges for more than the below TOLERANCE
# as a percent of the iterations, the training will stop.
# This is only enabled if "STABILIZE" is on, which
# prevents a single example from exploding the training.
iterations_success = 0
iterations_explode = 0
# when loss > recent_loss * TOLERANCE, then it could be a
# diverging/failing model, which we should skip all updates for.
TOLERANCE = 4.0
GAMMA = 0.02 # rolling average weight gain
recent_loss = None # stores the most recent loss magnitude
data_iter = iter(data_loader)
# model.parameters() is surprisingly expensive at 150ms, so cache it
named_params = list(model.named_parameters())
with EventStorage(start_iter) as storage:
while True:
data = next(data_iter)
storage.iter = iteration
# forward
loss_dict = model(data)
losses = sum(loss_dict.values())
# reduce
loss_dict_reduced = {k: v.item() for k, v in allreduce_dict(loss_dict).items()}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
# sync up
comm.synchronize()
if recent_loss is None:
# init recent loss fairly high
recent_loss = losses_reduced*2.0
# Is stabilization enabled, and loss high or NaN?
diverging_model = cfg.MODEL.STABILIZE > 0 and \
(losses_reduced > recent_loss*TOLERANCE or \
not (np.isfinite(losses_reduced)) or np.isnan(losses_reduced))
if diverging_model:
# clip and warn the user.
losses = losses.clip(0, 1)
logger.warning('Skipping gradient update due to higher than normal loss {:.2f} vs. rolling mean {:.2f}, Dict-> {}'.format(
losses_reduced, recent_loss, loss_dict_reduced
))
else:
# compute rolling average of loss
recent_loss = recent_loss * (1-GAMMA) + losses_reduced*GAMMA
if comm.is_main_process():
# send loss scalars to tensorboard.
storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)
epoch = iteration // cfg.SOLVER.IMS_PER_BATCH
# backward and step
optimizer.zero_grad()
losses.backward()
# if the loss is not too high,
# we still want to check gradients.
if not diverging_model:
if cfg.MODEL.STABILIZE > 0:
for name, param in named_params:
if param.grad is not None:
diverging_model = torch.isnan(param.grad).any() or torch.isinf(param.grad).any()
if diverging_model:
logger.warning('Skipping gradient update due to inf/nan detection, loss is {}'.format(loss_dict_reduced))
break
# convert exploded to a float, then allreduce it,
# if any process gradients have exploded then we skip together.
if cfg.MODEL.DEVICE == 'cuda':
diverging_model = torch.tensor(float(diverging_model)).cuda()
else:
diverging_model = torch.tensor(float(diverging_model))
if world_size > 1:
dist.all_reduce(diverging_model)
# sync up
comm.synchronize()
if diverging_model > 0:
optimizer.zero_grad()
iterations_explode += 1
else:
optimizer.step()
storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
iterations_success += 1
total_iterations = iterations_success + iterations_explode
# Only retry if we have trained sufficiently long relative
# to the latest checkpoint, which we would otherwise revert back to.
retry = (iterations_explode / total_iterations) >= cfg.MODEL.STABILIZE \
and (total_iterations > cfg.SOLVER.CHECKPOINT_PERIOD*1/2)
# Important for dist training. Convert to a float, then allreduce it,
# if any process gradients have exploded then we must skip together.
if cfg.MODEL.DEVICE == 'cuda':
retry = torch.tensor(float(retry)).cuda()
else:
retry = torch.tensor(float(retry))
if world_size > 1:
dist.all_reduce(retry)
# sync up
comm.synchronize()
# any processes need to retry
if retry > 0:
# instead of failing, try to resume the iteration instead.
logger.warning('!! Restarting training at {} iters. Exploding loss {:d}% of iters !!'.format(
iteration, int(100*(iterations_explode / (iterations_success + iterations_explode)))
))
# send these to garbage, for ideally a cleaner restart.
del data_mapper
del data_loader
del optimizer
del checkpointer
del periodic_checkpointer
return False
scheduler.step()
# Evaluate only when the loss is not diverging.
if not (diverging_model > 0) and \
(do_eval and ((iteration + 1) % cfg.TEST.EVAL_PERIOD) == 0 and iteration != (max_iter - 1)):
logger.info('Starting test for iteration {}'.format(iteration+1))
do_test(cfg, model, iteration=iteration+1, storage=storage)
comm.synchronize()
if not cfg.MODEL.USE_BN:
freeze_bn(model)
# Flush events
if iteration - start_iter > 5 and ((iteration + 1) % 20 == 0 or iteration == max_iter - 1):
for writer in writers:
writer.write()
# Do not bother checkpointing if there is potential for a diverging model.
if not (diverging_model > 0) and \
(iterations_explode / total_iterations) < 0.5*cfg.MODEL.STABILIZE:
periodic_checkpointer.step(iteration)
iteration += 1
if iteration >= max_iter:
break
# success
return True
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
get_cfg_defaults(cfg)
config_file = args.config_file
# store locally if needed
if config_file.startswith(util.CubeRCNNHandler.PREFIX):
config_file = util.CubeRCNNHandler._get_local_path(util.CubeRCNNHandler, config_file)
cfg.merge_from_file(config_file)
cfg.merge_from_list(args.opts)
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg.MODEL.DEVICE = device
cfg.SEED = 12
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="cubercnn")
filter_settings = data.get_filter_settings_from_cfg(cfg)
for dataset_name in cfg.DATASETS.TRAIN:
simple_register(dataset_name, filter_settings, filter_empty=True)
dataset_names_test = cfg.DATASETS.TEST
for dataset_name in dataset_names_test:
if not(dataset_name in cfg.DATASETS.TRAIN):
simple_register(dataset_name, filter_settings, filter_empty=True)
return cfg
def main(args):
cfg = setup(args)
if cfg.log:
idx = cfg.OUTPUT_DIR.find('/')
name = f'{cfg.OUTPUT_DIR[idx+1:]} cube rcnn {datetime.datetime.now():%Y-%m-%d %H:%M:%S%z}'
wandb.init(project="cube", sync_tensorboard=True, name=name, config=cfg)
logger.info('Preprocessing Training Datasets')
filter_settings = data.get_filter_settings_from_cfg(cfg)
priors = None
if args.eval_only:
category_path = os.path.join(util.file_parts(args.config_file)[0], 'category_meta.json')
# store locally if needed
if category_path.startswith(util.CubeRCNNHandler.PREFIX):
category_path = util.CubeRCNNHandler._get_local_path(util.CubeRCNNHandler, category_path)
metadata = util.load_json(category_path)
# register the categories
thing_classes = metadata['thing_classes']
id_map = {int(key):val for key, val in metadata['thing_dataset_id_to_contiguous_id'].items()}
MetadataCatalog.get('omni3d_model').thing_classes = thing_classes
MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id = id_map
else:
# setup and join the data.
dataset_paths = [os.path.join('datasets', 'Omni3D', name + '.json') for name in cfg.DATASETS.TRAIN]
datasets = data.Omni3D(dataset_paths, filter_settings=filter_settings)
# determine the meta data given the datasets used.
data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)
thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
'''
It may be useful to keep track of which categories are annotated/known
for each dataset in use, in case a method wants to use this information.
'''
infos = datasets.dataset['info']
if type(infos) == dict:
infos = [datasets.dataset['info']]
dataset_id_to_unknown_cats = {}
possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
dataset_id_to_src = {}
for info in infos:
dataset_id = info['id']
known_category_training_ids = set()
if not dataset_id in dataset_id_to_src:
dataset_id_to_src[dataset_id] = info['source']
for id in info['known_category_ids']:
if id in dataset_id_to_contiguous_id:
known_category_training_ids.add(dataset_id_to_contiguous_id[id])
# determine and store the unknown categories.
unknown_categories = possible_categories - known_category_training_ids
dataset_id_to_unknown_cats[dataset_id] = unknown_categories
# log the per-dataset categories
logger.info('Available categories for {}'.format(info['name']))
logger.info([thing_classes[i] for i in (possible_categories & known_category_training_ids)])
# compute priors given the training data.
priors = util.compute_priors(cfg, datasets)
'''
The training loops can attempt to train for N times.
This catches a divergence or other failure modes.
'''
remaining_attempts = MAX_TRAINING_ATTEMPTS
while remaining_attempts > 0:
# build the training model.
model = build_model(cfg, priors=priors)
if remaining_attempts == MAX_TRAINING_ATTEMPTS:
# log the first attempt's settings.
# logger.info("Model:\n{}".format(model))
pass
if args.eval_only:
# skip straight to eval mode
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
# setup distributed training.
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()],
broadcast_buffers=False, find_unused_parameters=True
)
# train full model, potentially with resume.
if do_train(cfg, model, dataset_id_to_unknown_cats, dataset_id_to_src, resume=args.resume):
break
else:
# allow restart when a model fails to train.
remaining_attempts -= 1
del model
if remaining_attempts == 0:
# Exit if the model could not finish without diverging.
raise ValueError('Training failed')
return do_test(cfg, model)
def allreduce_dict(input_dict, average=True):
"""
Reduce the values in the dictionary from all processes so that process with rank
0 has the reduced results.
Args:
input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor.
average (bool): whether to do average or sum
Returns:
a dict with the same keys as input_dict, after reduction.
"""
world_size = comm.get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
# only main process gets accumulated, so only divide by
# world_size in this case
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
) |