Spaces:
Sleeping
Sleeping
File size: 9,826 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import sys
import warnings
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_512 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_384 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_21m_224 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_11m_224 in registry")
warnings.filterwarnings("ignore", message="Overwriting tiny_vit_5m_224 in registry")
from cubercnn.data.generate_ground_segmentations import init_segmentation
import logging
import os
import torch
import datetime
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import (
default_argument_parser,
default_setup,
)
from detectron2.utils.logger import setup_logger
from cubercnn.data.dataset_mapper import DatasetMapper3D
logger = logging.getLogger("scoring")
from cubercnn.config import get_cfg_defaults
from cubercnn.modeling.meta_arch import build_model, build_model_scorenet
from cubercnn import util, vis, data
# even though this import is unused, it initializes the backbone registry
from cubercnn.modeling.backbone import build_dla_from_vision_fpn_backbone
# Below imports followed with do_train
from detectron2.engine import (
default_argument_parser,
default_setup,
default_writers,
launch
)
from detectron2.solver import build_lr_scheduler
from detectron2.utils.events import EventStorage
import wandb
from cubercnn.solver import build_optimizer, freeze_bn, PeriodicCheckpointerOnlyOne
from cubercnn.data import (
load_omni3d_json,
DatasetMapper3D,
build_detection_train_loader,
build_detection_test_loader,
get_omni3d_categories,
simple_register
)
from tqdm import tqdm
def do_train(cfg, model, dataset_id_to_unknown_cats, dataset_id_to_src, resume=False):
max_iter = cfg.SOLVER.MAX_ITER
do_eval = cfg.TEST.EVAL_PERIOD > 0
modelbase = model[0]
modelbase.eval()
model = model[1]
model.train()
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
# bookkeeping
checkpointer = DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler)
periodic_checkpointer = PeriodicCheckpointerOnlyOne(checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter)
writers = default_writers(cfg.OUTPUT_DIR, max_iter)
# create the dataloader
data_mapper = DatasetMapper3D(cfg, is_train=False, mode='load_proposals')
dataset_name = cfg.DATASETS.TRAIN[0]
data_loader = build_detection_train_loader(cfg, mapper=data_mapper, dataset_id_to_src=dataset_id_to_src, num_workers=4)
# give the mapper access to dataset_ids
data_mapper.dataset_id_to_unknown_cats = dataset_id_to_unknown_cats
if cfg.MODEL.WEIGHTS_PRETRAIN != '':
# load ONLY the model, no checkpointables.
checkpointer.load(cfg.MODEL.WEIGHTS_PRETRAIN, checkpointables=[])
# determine the starting iteration, if resuming
start_iter = (checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1)
iteration = start_iter
logger.info("Starting training from iteration {}".format(start_iter))
if not cfg.MODEL.USE_BN:
freeze_bn(modelbase)
data_iter = iter(data_loader)
pbar = tqdm(range(start_iter, max_iter), initial=start_iter, total=max_iter, desc="Training", smoothing=0.05)
segmentor = init_segmentation(device=cfg.MODEL.DEVICE)
with EventStorage(start_iter) as storage:
while True:
data = next(data_iter)
storage.iter = iteration
# forward
combined_features = modelbase(data)
instances, loss_1, loss_2 = model(data, combined_features)
# scale the dimension L1-loss by a factor of 1000 to have both the scoring and regression losses in a similar range
loss_1 /= 2
loss_1 /= len(data)
loss_2 /= len(data)
loss_2 /= 100
total_loss = loss_1 + loss_2
# send loss scalars to tensorboard.
storage.put_scalars(total_loss=total_loss, IoU_loss=loss_1, segment_loss=loss_2)
# backward and step
total_loss.backward()
#for name, param in model.named_parameters():
# if param.grad is not None:
# print(name, param.grad)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
periodic_checkpointer.step(iteration)
# logging stuff
pbar.update(1)
pbar.set_postfix({"tot.loss": total_loss.item(), "IoU.loss": loss_1.item(), "Seg.loss": loss_2.item()})
if iteration - start_iter > 5 and ((iteration + 1) % 20 == 0 or iteration == max_iter - 1):
for writer in writers[1:]: # 3 writers; 1: prints, 2: json logs, 3: tensorboard
writer.write()
iteration += 1
if iteration >= max_iter:
break
# success
return True
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
get_cfg_defaults(cfg)
config_file = args.config_file
# store locally if needed
if config_file.startswith(util.CubeRCNNHandler.PREFIX):
config_file = util.CubeRCNNHandler._get_local_path(util.CubeRCNNHandler, config_file)
cfg.merge_from_file(config_file)
cfg.merge_from_list(args.opts)
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg.MODEL.DEVICE = device
cfg.SEED = 13
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, name="scoring")
filter_settings = data.get_filter_settings_from_cfg(cfg)
for dataset_name in cfg.DATASETS.TRAIN:
simple_register(dataset_name, filter_settings, filter_empty=True)
dataset_names_test = cfg.DATASETS.TEST
# filter_ = True if cfg.PLOT.EVAL == 'MABO' else False
for dataset_name in dataset_names_test:
if not(dataset_name in cfg.DATASETS.TRAIN):
# TODO: empties should not be filtering in test normally, or maybe they should??
simple_register(dataset_name, filter_settings, filter_empty=True)
return cfg
def main(args):
cfg = setup(args)
name = f'learned proposal {datetime.datetime.now():%Y-%m-%d %H:%M:%S%z}'
if sys.platform == 'linux':
# only log to wandb on hpc/linux
#wandb.init(project="cube", sync_tensorboard=True, name=name, config=cfg, mode='online')
True
category_path = 'output/Baseline_sgd/category_meta.json'
# store locally if needed
if category_path.startswith(util.CubeRCNNHandler.PREFIX):
category_path = util.CubeRCNNHandler._get_local_path(util.CubeRCNNHandler, category_path)
metadata = util.load_json(category_path)
# register the categories
thing_classes = metadata['thing_classes']
id_map = {int(key):val for key, val in metadata['thing_dataset_id_to_contiguous_id'].items()}
MetadataCatalog.get('omni3d_model').thing_classes = thing_classes
MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id = id_map
# build the model.
modelbase = build_model_scorenet(cfg, 'ScoreNetBase')
model = build_model_scorenet(cfg, 'ScoreNet')
filter_settings = data.get_filter_settings_from_cfg(cfg)
# setup and join the data.
dataset_paths = [os.path.join('datasets', 'Omni3D', name + '.json') for name in cfg.DATASETS.TRAIN]
datasets = data.Omni3D(dataset_paths, filter_settings=filter_settings)
# determine the meta data given the datasets used.
data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)
thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
'''
It may be useful to keep track of which categories are annotated/known
for each dataset in use, in case a method wants to use this information.
'''
infos = datasets.dataset['info']
if type(infos) == dict:
infos = [datasets.dataset['info']]
dataset_id_to_unknown_cats = {}
possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
dataset_id_to_src = {}
for info in infos:
dataset_id = info['id']
known_category_training_ids = set()
if not dataset_id in dataset_id_to_src:
dataset_id_to_src[dataset_id] = info['source']
for id in info['known_category_ids']:
if id in dataset_id_to_contiguous_id:
known_category_training_ids.add(dataset_id_to_contiguous_id[id])
# determine and store the unknown categories.
unknown_categories = possible_categories - known_category_training_ids
dataset_id_to_unknown_cats[dataset_id] = unknown_categories
# log the per-dataset categories
# logger.info('Available categories for {}'.format(info['name']))
# logger.info([thing_classes[i] for i in (possible_categories & known_category_training_ids)])
# DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(cfg.MODEL.WEIGHTS, resume=False)
return do_train(cfg, (modelbase, model), dataset_id_to_unknown_cats, dataset_id_to_src, resume=args.resume)
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
main(args) |