AndreasLH's picture
upload repo
56bd2b5
raw
history blame
17.7 kB
# Copyright (c) Meta Platforms, Inc. and affiliates
import json
import time
import os
import contextlib
import io
import logging
import numpy as np
import pandas as pd
from pycocotools.coco import COCO
from collections import defaultdict
from fvcore.common.timer import Timer
from detectron2.utils.file_io import PathManager
from detectron2.structures import BoxMode
from detectron2.data import MetadataCatalog, DatasetCatalog
from cubercnn import util
VERSION = '0.1'
logger = logging.getLogger(__name__)
def get_version():
return VERSION
def get_global_dataset_stats(path_to_stats=None, reset=False):
if path_to_stats is None:
path_to_stats = os.path.join('datasets', 'Omni3D', 'stats.json')
if os.path.exists(path_to_stats) and not reset:
stats = util.load_json(path_to_stats)
else:
stats = {
'n_datasets': 0,
'n_ims': 0,
'n_anns': 0,
'categories': []
}
return stats
def save_global_dataset_stats(stats, path_to_stats=None):
if path_to_stats is None:
path_to_stats = os.path.join('datasets', 'Omni3D', 'stats.json')
util.save_json(path_to_stats, stats)
def get_filter_settings_from_cfg(cfg=None):
if cfg is None:
return {
'category_names': [],
'ignore_names': [],
'truncation_thres': 0.99,
'visibility_thres': 0.01,
'min_height_thres': 0.00,
'max_height_thres': 1.50,
'modal_2D_boxes': False,
'trunc_2D_boxes': False,
'max_depth': 1e8,
}
else:
return {
'category_names': cfg.DATASETS.CATEGORY_NAMES,
'ignore_names': cfg.DATASETS.IGNORE_NAMES,
'truncation_thres': cfg.DATASETS.TRUNCATION_THRES,
'visibility_thres': cfg.DATASETS.VISIBILITY_THRES,
'min_height_thres': cfg.DATASETS.MIN_HEIGHT_THRES,
'modal_2D_boxes': cfg.DATASETS.MODAL_2D_BOXES,
'trunc_2D_boxes': cfg.DATASETS.TRUNC_2D_BOXES,
'max_depth': cfg.DATASETS.MAX_DEPTH,
# TODO expose as a config
'max_height_thres': 1.50,
}
def is_ignore(anno, filter_settings, image_height):
ignore = anno['behind_camera']
ignore |= (not bool(anno['valid3D']))
if ignore:
return ignore
ignore |= anno['dimensions'][0] <= 0.01
ignore |= anno['dimensions'][1] <= 0.01
ignore |= anno['dimensions'][2] <= 0.01
ignore |= anno['center_cam'][2] > filter_settings['max_depth']
ignore |= (anno['lidar_pts'] == 0)
ignore |= (anno['segmentation_pts'] == 0)
ignore |= (anno['depth_error'] > 0.5)
# tightly annotated 2D boxes are not always available.
if filter_settings['modal_2D_boxes'] and 'bbox2D_tight' in anno and anno['bbox2D_tight'][0] != -1:
bbox2D = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
# truncated projected 2D boxes are also not always available.
elif filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
bbox2D = BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
# use the projected 3D --> 2D box, which requires a visible 3D cuboid.
elif 'bbox2D_proj' in anno:
bbox2D = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
bbox2D = anno['bbox']
ignore |= bbox2D[3] <= filter_settings['min_height_thres']*image_height
ignore |= bbox2D[3] >= filter_settings['max_height_thres']*image_height
ignore |= (anno['truncation'] >=0 and anno['truncation'] >= filter_settings['truncation_thres'])
ignore |= (anno['visibility'] >= 0 and anno['visibility'] <= filter_settings['visibility_thres'])
if 'ignore_names' in filter_settings:
ignore |= anno['category_name'] in filter_settings['ignore_names']
return ignore
def simple_register(dataset_name, filter_settings, filter_empty=True, datasets_root_path=None):
if datasets_root_path is None:
datasets_root_path = path_to_json = os.path.join('datasets', 'Omni3D',)
path_to_json = os.path.join(datasets_root_path, dataset_name + '.json')
path_to_image_root = 'datasets'
DatasetCatalog.register(dataset_name, lambda: load_omni3d_json(
path_to_json, path_to_image_root,
dataset_name, filter_settings, filter_empty=filter_empty
))
MetadataCatalog.get(dataset_name).set(json_file=path_to_json, image_root=path_to_image_root, evaluator_type="coco")
class Omni3D(COCO):
'''
Class for COCO-like dataset object. Not inherently related to
use with Detectron2 or training per se.
'''
def __init__(self, annotation_files, filter_settings=None):
# load dataset
self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict()
self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list)
self.idx_without_ground = set(pd.read_csv('datasets/no_ground_idx.csv')['img_id'].values)
if isinstance(annotation_files, str):
annotation_files = [annotation_files,]
cats_ids_master = []
cats_master = []
for annotation_file in annotation_files:
_, name, _ = util.file_parts(annotation_file)
logger.info('loading {} annotations into memory...'.format(name))
dataset = json.load(open(annotation_file, 'r'))
assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset))
if type(dataset['info']) == list:
dataset['info'] = dataset['info'][0]
dataset['info']['known_category_ids'] = [cat['id'] for cat in dataset['categories']]
# first dataset
if len(self.dataset) == 0:
self.dataset = dataset
# concatenate datasets
else:
if type(self.dataset['info']) == dict:
self.dataset['info'] = [self.dataset['info']]
self.dataset['info'] += [dataset['info']]
self.dataset['annotations'] += dataset['annotations']
self.dataset['images'] += dataset['images']
# sort through categories
for cat in dataset['categories']:
if not cat['id'] in cats_ids_master:
cats_ids_master.append(cat['id'])
cats_master.append(cat)
if filter_settings is None:
# include every category in the master list
self.dataset['categories'] = [
cats_master[i]
for i in np.argsort(cats_ids_master)
]
else:
# determine which categories we may actually use for filtering.
trainable_cats = set(filter_settings['ignore_names']) | set(filter_settings['category_names'])
# category names are provided to us
if len(filter_settings['category_names']) > 0:
self.dataset['categories'] = [
cats_master[i]
for i in np.argsort(cats_ids_master)
if cats_master[i]['name'] in filter_settings['category_names']
]
# no categories are provided, so assume use ALL available.
else:
self.dataset['categories'] = [
cats_master[i]
for i in np.argsort(cats_ids_master)
]
filter_settings['category_names'] = [cat['name'] for cat in self.dataset['categories']]
trainable_cats = trainable_cats | set(filter_settings['category_names'])
valid_anns = []
im_height_map = {}
for im_obj in self.dataset['images']:
im_height_map[im_obj['id']] = im_obj['height']
# Filter out annotations
for anno_idx, anno in enumerate(self.dataset['annotations']):
im_height = im_height_map[anno['image_id']]
ignore = is_ignore(anno, filter_settings, im_height)
if filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
bbox2D = BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif anno['bbox2D_proj'][0] != -1:
bbox2D = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif anno['bbox2D_tight'][0] != -1:
bbox2D = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
continue
width = bbox2D[2]
height = bbox2D[3]
self.dataset['annotations'][anno_idx]['area'] = width*height
self.dataset['annotations'][anno_idx]['iscrowd'] = False
self.dataset['annotations'][anno_idx]['ignore'] = ignore
self.dataset['annotations'][anno_idx]['ignore2D'] = ignore
self.dataset['annotations'][anno_idx]['ignore3D'] = ignore
if filter_settings['modal_2D_boxes'] and anno['bbox2D_tight'][0] != -1:
self.dataset['annotations'][anno_idx]['bbox'] = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
self.dataset['annotations'][anno_idx]['bbox'] = bbox2D
self.dataset['annotations'][anno_idx]['bbox3D'] = anno['bbox3D_cam']
self.dataset['annotations'][anno_idx]['depth'] = anno['center_cam'][2]
category_name = anno["category_name"]
# category is part of trainable categories?
if category_name in trainable_cats:
if not ignore:
valid_anns.append(self.dataset['annotations'][anno_idx])
self.dataset['annotations'] = valid_anns
# append depth image path to each image corresponding to the id
for img in self.dataset['images']:
img_id = img['id']
img['depth_image_path'] = f'datasets/depth_maps/{img_id}.npz'
if not img_id in self.idx_without_ground:
img['ground_image_path'] = f'datasets/ground_maps/{img_id}.npz'
self.createIndex()
def info(self):
infos = self.dataset['info']
if type(infos) == dict:
infos = [infos]
for i, info in enumerate(infos):
print('Dataset {}/{}'.format(i+1, infos))
for key, value in info.items():
print('{}: {}'.format(key, value))
def register_and_store_model_metadata(datasets, output_dir, filter_settings=None):
output_file = os.path.join(output_dir, 'category_meta.json')
if os.path.exists(output_file):
metadata = util.load_json(output_file)
thing_classes = metadata['thing_classes']
id_map = metadata['thing_dataset_id_to_contiguous_id']
# json saves id map as strings rather than ints
id_map = {int(idA):idB for idA, idB in id_map.items()}
else:
omni3d_stats = util.load_json(os.path.join('datasets', 'Omni3D', 'stats.json'))
thing_classes = filter_settings['category_names']
cat_ids = []
for cat in thing_classes:
cat_idx = omni3d_stats['category_names'].index(cat)
cat_id = omni3d_stats['categories'][cat_idx]['id']
cat_ids.append(cat_id)
cat_order = np.argsort(cat_ids)
cat_ids = [cat_ids[i] for i in cat_order]
thing_classes = [thing_classes[i] for i in cat_order]
id_map = {id: i for i, id in enumerate(cat_ids)}
util.save_json(output_file, {
'thing_classes': thing_classes,
'thing_dataset_id_to_contiguous_id': id_map,
})
MetadataCatalog.get('omni3d_model').thing_classes = thing_classes
MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id = id_map
def load_omni3d_json(json_file, image_root, dataset_name, filter_settings, filter_empty=True):
# read in the dataset
timer = Timer()
json_file = PathManager.get_local_path(json_file)
with contextlib.redirect_stdout(io.StringIO()):
coco_api = COCO(json_file)
ground_map_files = os.listdir('datasets/ground_maps')
ground_idx = []
for file in ground_map_files:
try:
idx = int(file.split('.')[0])
ground_idx.append(idx)
except:
pass
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
# the global meta information for the full dataset
meta_model = MetadataCatalog.get('omni3d_model')
# load the meta information
meta = MetadataCatalog.get(dataset_name)
cat_ids = sorted(coco_api.getCatIds(filter_settings['category_names']))
cats = coco_api.loadCats(cat_ids)
thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
meta.thing_classes = thing_classes
# the id mapping must be based on the model!
id_map = meta_model.thing_dataset_id_to_contiguous_id
meta.thing_dataset_id_to_contiguous_id = id_map
# sort indices for reproducible results
img_ids = sorted(coco_api.imgs.keys())
imgs = coco_api.loadImgs(img_ids)
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
total_num_valid_anns = sum([len(x) for x in anns])
total_num_anns = len(coco_api.anns)
if total_num_valid_anns < total_num_anns:
logger.info(
f"{json_file} contains {total_num_anns} annotations, but only "
f"{total_num_valid_anns} of them match to images in the file."
)
imgs_anns = list(zip(imgs, anns))
logger.info("Loaded {} images in Omni3D format from {}".format(len(imgs_anns), json_file))
dataset_dicts = []
# annotation keys to pass along
ann_keys = [
"bbox", "bbox3D_cam", "bbox2D_proj", "bbox2D_trunc", "bbox2D_tight",
"center_cam", "dimensions", "pose", "R_cam", "category_id",
]
# optional per image keys to pass if exists
# this property is unique to KITTI.
img_keys_optional = ['p2']
invalid_count = 0
for img_dict, anno_dict_list in imgs_anns:
has_valid_annotation = False
record = {}
record["file_name"] = os.path.join(image_root, img_dict["file_path"])
record["dataset_id"] = img_dict["dataset_id"]
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
record["K"] = img_dict["K"]
# store optional keys when available
for img_key in img_keys_optional:
if img_key in img_dict:
record[img_key] = img_dict[img_key]
image_id = record["image_id"] = img_dict["id"]
record["depth_image_path"] = f'datasets/depth_maps/{image_id}.npz'
if image_id in ground_idx:
record["ground_image_path"] = f'datasets/ground_maps/{image_id}.npz'
objs = []
# where invalid annotations are removed
for anno in anno_dict_list:
assert anno["image_id"] == image_id
obj = {key: anno[key] for key in ann_keys if key in anno}
obj["bbox_mode"] = BoxMode.XYWH_ABS
annotation_category_id = obj["category_id"]
# category is not part of ids and is not in the ignore category?
if not (annotation_category_id in id_map) and not (anno['category_name'] in filter_settings['ignore_names']):
continue
ignore = is_ignore(anno, filter_settings, img_dict["height"])
obj['iscrowd'] = False
obj['ignore'] = ignore
if filter_settings['modal_2D_boxes'] and 'bbox2D_tight' in anno and anno['bbox2D_tight'][0] != -1:
obj['bbox'] = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif filter_settings['trunc_2D_boxes'] and 'bbox2D_trunc' in anno and not np.all([val==-1 for val in anno['bbox2D_trunc']]):
obj['bbox'] = BoxMode.convert(anno['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif 'bbox2D_proj' in anno:
obj['bbox'] = BoxMode.convert(anno['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
continue
obj['pose'] = anno['R_cam']
# store category as -1 for ignores!
# OLD Logic
# obj["category_id"] = -1 if ignore else id_map[annotation_category_id]
if filter_empty:
obj["category_id"] = id_map[annotation_category_id]
if not ignore:
objs.append(obj)
else:
obj["category_id"] = -1 if ignore else id_map[annotation_category_id]
has_valid_annotation |= (not ignore)
if has_valid_annotation or (not filter_empty):
record["annotations"] = objs
dataset_dicts.append(record)
else:
invalid_count += 1
logger.info("Filtered out {}/{} images without valid annotations".format(invalid_count, len(imgs_anns)))
return dataset_dicts