Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
import cv2 | |
from segment_anything import sam_model_registry, SamPredictor | |
import os | |
def show_mask(mask, ax, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.imshow(mask_image) | |
def show_points(coords, labels, ax, marker_size=375): | |
pos_points = coords[labels==1] | |
neg_points = coords[labels==0] | |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
def show_box(box, ax): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
def show_res(masks, scores, input_point, input_label, input_box, filename, image): | |
for i, (mask, score) in enumerate(zip(masks, scores)): | |
plt.figure(figsize=(10,10)) | |
plt.imshow(image) | |
show_mask(mask, plt.gca()) | |
if input_box is not None: | |
box = input_box[i] | |
show_box(box, plt.gca()) | |
if (input_point is not None) and (input_label is not None): | |
show_points(input_point, input_label, plt.gca()) | |
print(f"Score: {score:.3f}") | |
plt.axis('off') | |
plt.savefig(filename+'_'+str(i)+'.png',bbox_inches='tight',pad_inches=-0.1) | |
plt.close() | |
def show_res_multi(masks, scores, input_point, input_label, input_box, filename, image): | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
for mask in masks: | |
show_mask(mask, plt.gca(), random_color=True) | |
for box in input_box: | |
show_box(box, plt.gca()) | |
for score in scores: | |
print(f"Score: {score:.3f}") | |
plt.axis('off') | |
plt.savefig(filename +'.png',bbox_inches='tight',pad_inches=-0.1) | |
plt.close() | |
if __name__ == "__main__": | |
sam_checkpoint = "./pretrained_checkpoint/sam_hq_vit_tiny.pth" | |
model_type = "vit_tiny" | |
device = "cuda" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
sam.eval() | |
predictor = SamPredictor(sam) | |
image = cv2.imread('demo/input_imgs/dog.jpg') | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
predictor.set_image(image) | |
# hq_token_only: False means use hq output to correct SAM output. | |
# True means use hq output only. | |
# Default: False | |
hq_token_only = False | |
# To achieve best visualization effect, for images contain multiple objects (like typical coco images), we suggest to set hq_token_only=False | |
# For images contain single object, we suggest to set hq_token_only = True | |
# For quantiative evaluation on COCO/YTVOS/DAVIS/UVO/LVIS etc., we set hq_token_only = False | |
# box prompt | |
input_box = np.array([[784,500,1789,1000]]) | |
input_point, input_label = None, None | |
masks, scores, logits = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
box = input_box, | |
multimask_output=False, | |
hq_token_only=hq_token_only, | |
) | |
result_path = 'demo/hq_sam_tiny_result/' | |
os.makedirs(result_path, exist_ok=True) | |
show_res(masks,scores,input_point, input_label, input_box, result_path + 'dog', image) | |
image = cv2.imread('demo/input_imgs/example3.png') | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
predictor.set_image(image) | |
hq_token_only = True | |
# point prompt | |
input_point = np.array([[221,482],[498,633],[750,379]]) | |
input_label = np.ones(input_point.shape[0]) | |
input_box = None | |
masks, scores, logits = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
box = input_box, | |
multimask_output=False, | |
hq_token_only=hq_token_only, | |
) | |
show_res(masks,scores,input_point, input_label, input_box, result_path + 'example3', image) | |
image = cv2.imread('demo/input_imgs/example7.png') | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
predictor.set_image(image) | |
hq_token_only = False | |
# multi box prompt | |
input_box = torch.tensor([[45,260,515,470], [310,228,424,296]],device=predictor.device) | |
transformed_box = predictor.transform.apply_boxes_torch(input_box, image.shape[:2]) | |
input_point, input_label = None, None | |
masks, scores, logits = predictor.predict_torch( | |
point_coords=input_point, | |
point_labels=input_label, | |
boxes=transformed_box, | |
multimask_output=False, | |
hq_token_only=hq_token_only, | |
) | |
masks = masks.squeeze(1).cpu().numpy() | |
scores = scores.squeeze(1).cpu().numpy() | |
input_box = input_box.cpu().numpy() | |
show_res_multi(masks, scores, input_point, input_label, input_box, result_path + 'example7', image) | |