AndreasLH's picture
upload repo
56bd2b5
# Copyright by HQ-SAM team
# All rights reserved.
## data loader
from __future__ import print_function, division
import numpy as np
import random
from copy import deepcopy
from skimage import io
import os
from glob import glob
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from torchvision import transforms, utils
from torchvision.transforms.functional import normalize
import torch.nn.functional as F
from torch.utils.data.distributed import DistributedSampler
#### --------------------- dataloader online ---------------------####
def get_im_gt_name_dict(datasets, flag='valid'):
print("------------------------------", flag, "--------------------------------")
name_im_gt_list = []
for i in range(len(datasets)):
print("--->>>", flag, " dataset ",i,"/",len(datasets)," ",datasets[i]["name"],"<<<---")
tmp_im_list, tmp_gt_list = [], []
tmp_im_list = glob(datasets[i]["im_dir"]+os.sep+'*'+datasets[i]["im_ext"])
print('-im-',datasets[i]["name"],datasets[i]["im_dir"], ': ',len(tmp_im_list))
if(datasets[i]["gt_dir"]==""):
print('-gt-', datasets[i]["name"], datasets[i]["gt_dir"], ': ', 'No Ground Truth Found')
tmp_gt_list = []
else:
tmp_gt_list = [datasets[i]["gt_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["gt_ext"] for x in tmp_im_list]
print('-gt-', datasets[i]["name"],datasets[i]["gt_dir"], ': ',len(tmp_gt_list))
name_im_gt_list.append({"dataset_name":datasets[i]["name"],
"im_path":tmp_im_list,
"gt_path":tmp_gt_list,
"im_ext":datasets[i]["im_ext"],
"gt_ext":datasets[i]["gt_ext"]})
return name_im_gt_list
def create_dataloaders(name_im_gt_list, my_transforms=[], batch_size=1, training=False):
gos_dataloaders = []
gos_datasets = []
if(len(name_im_gt_list)==0):
return gos_dataloaders, gos_datasets
num_workers_ = 1
if(batch_size>1):
num_workers_ = 2
if(batch_size>4):
num_workers_ = 4
if(batch_size>8):
num_workers_ = 8
if training:
for i in range(len(name_im_gt_list)):
gos_dataset = OnlineDataset([name_im_gt_list[i]], transform = transforms.Compose(my_transforms))
gos_datasets.append(gos_dataset)
gos_dataset = ConcatDataset(gos_datasets)
sampler = DistributedSampler(gos_dataset)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler, batch_size, drop_last=True)
dataloader = DataLoader(gos_dataset, batch_sampler=batch_sampler_train, num_workers=num_workers_)
gos_dataloaders = dataloader
gos_datasets = gos_dataset
else:
for i in range(len(name_im_gt_list)):
gos_dataset = OnlineDataset([name_im_gt_list[i]], transform = transforms.Compose(my_transforms), eval_ori_resolution = True)
sampler = DistributedSampler(gos_dataset, shuffle=False)
dataloader = DataLoader(gos_dataset, batch_size, sampler=sampler, drop_last=False, num_workers=num_workers_)
gos_dataloaders.append(dataloader)
gos_datasets.append(gos_dataset)
return gos_dataloaders, gos_datasets
class RandomHFlip(object):
def __init__(self,prob=0.5):
self.prob = prob
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
# random horizontal flip
if random.random() >= self.prob:
image = torch.flip(image,dims=[2])
label = torch.flip(label,dims=[2])
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
class Resize(object):
def __init__(self,size=[320,320]):
self.size = size
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
image = torch.squeeze(F.interpolate(torch.unsqueeze(image,0),self.size,mode='bilinear'),dim=0)
label = torch.squeeze(F.interpolate(torch.unsqueeze(label,0),self.size,mode='bilinear'),dim=0)
return {'imidx':imidx,'image':image, 'label':label, 'shape':torch.tensor(self.size)}
class RandomCrop(object):
def __init__(self,size=[288,288]):
self.size = size
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
h, w = image.shape[1:]
new_h, new_w = self.size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
image = image[:,top:top+new_h,left:left+new_w]
label = label[:,top:top+new_h,left:left+new_w]
return {'imidx':imidx,'image':image, 'label':label, 'shape':torch.tensor(self.size)}
class Normalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,sample):
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
image = normalize(image,self.mean,self.std)
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
class LargeScaleJitter(object):
"""
implementation of large scale jitter from copy_paste
https://github.com/gaopengcuhk/Pretrained-Pix2Seq/blob/7d908d499212bfabd33aeaa838778a6bfb7b84cc/datasets/transforms.py
"""
def __init__(self, output_size=1024, aug_scale_min=0.1, aug_scale_max=2.0):
self.desired_size = torch.tensor(output_size)
self.aug_scale_min = aug_scale_min
self.aug_scale_max = aug_scale_max
def pad_target(self, padding, target):
target = target.copy()
if "masks" in target:
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[1], 0, padding[0]))
return target
def __call__(self, sample):
imidx, image, label, image_size = sample['imidx'], sample['image'], sample['label'], sample['shape']
#resize keep ratio
out_desired_size = (self.desired_size * image_size / max(image_size)).round().int()
random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min
scaled_size = (random_scale * self.desired_size).round()
scale = torch.minimum(scaled_size / image_size[0], scaled_size / image_size[1])
scaled_size = (image_size * scale).round().long()
scaled_image = torch.squeeze(F.interpolate(torch.unsqueeze(image,0),scaled_size.tolist(),mode='bilinear'),dim=0)
scaled_label = torch.squeeze(F.interpolate(torch.unsqueeze(label,0),scaled_size.tolist(),mode='bilinear'),dim=0)
# random crop
crop_size = (min(self.desired_size, scaled_size[0]), min(self.desired_size, scaled_size[1]))
margin_h = max(scaled_size[0] - crop_size[0], 0).item()
margin_w = max(scaled_size[1] - crop_size[1], 0).item()
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0].item()
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1].item()
scaled_image = scaled_image[:,crop_y1:crop_y2, crop_x1:crop_x2]
scaled_label = scaled_label[:,crop_y1:crop_y2, crop_x1:crop_x2]
# pad
padding_h = max(self.desired_size - scaled_image.size(1), 0).item()
padding_w = max(self.desired_size - scaled_image.size(2), 0).item()
image = F.pad(scaled_image, [0,padding_w, 0,padding_h],value=128)
label = F.pad(scaled_label, [0,padding_w, 0,padding_h],value=0)
return {'imidx':imidx,'image':image, 'label':label, 'shape':torch.tensor(image.shape[-2:])}
class OnlineDataset(Dataset):
def __init__(self, name_im_gt_list, transform=None, eval_ori_resolution=False):
self.transform = transform
self.dataset = {}
## combine different datasets into one
dataset_names = []
dt_name_list = [] # dataset name per image
im_name_list = [] # image name
im_path_list = [] # im path
gt_path_list = [] # gt path
im_ext_list = [] # im ext
gt_ext_list = [] # gt ext
for i in range(0,len(name_im_gt_list)):
dataset_names.append(name_im_gt_list[i]["dataset_name"])
# dataset name repeated based on the number of images in this dataset
dt_name_list.extend([name_im_gt_list[i]["dataset_name"] for x in name_im_gt_list[i]["im_path"]])
im_name_list.extend([x.split(os.sep)[-1].split(name_im_gt_list[i]["im_ext"])[0] for x in name_im_gt_list[i]["im_path"]])
im_path_list.extend(name_im_gt_list[i]["im_path"])
gt_path_list.extend(name_im_gt_list[i]["gt_path"])
im_ext_list.extend([name_im_gt_list[i]["im_ext"] for x in name_im_gt_list[i]["im_path"]])
gt_ext_list.extend([name_im_gt_list[i]["gt_ext"] for x in name_im_gt_list[i]["gt_path"]])
self.dataset["data_name"] = dt_name_list
self.dataset["im_name"] = im_name_list
self.dataset["im_path"] = im_path_list
self.dataset["ori_im_path"] = deepcopy(im_path_list)
self.dataset["gt_path"] = gt_path_list
self.dataset["ori_gt_path"] = deepcopy(gt_path_list)
self.dataset["im_ext"] = im_ext_list
self.dataset["gt_ext"] = gt_ext_list
self.eval_ori_resolution = eval_ori_resolution
def __len__(self):
return len(self.dataset["im_path"])
def __getitem__(self, idx):
im_path = self.dataset["im_path"][idx]
gt_path = self.dataset["gt_path"][idx]
im = io.imread(im_path)
gt = io.imread(gt_path)
if len(gt.shape) > 2:
gt = gt[:, :, 0]
if len(im.shape) < 3:
im = im[:, :, np.newaxis]
if im.shape[2] == 1:
im = np.repeat(im, 3, axis=2)
im = torch.tensor(im.copy(), dtype=torch.float32)
im = torch.transpose(torch.transpose(im,1,2),0,1)
gt = torch.unsqueeze(torch.tensor(gt, dtype=torch.float32),0)
sample = {
"imidx": torch.from_numpy(np.array(idx)),
"image": im,
"label": gt,
"shape": torch.tensor(im.shape[-2:]),
}
if self.transform:
sample = self.transform(sample)
if self.eval_ori_resolution:
sample["ori_label"] = gt.type(torch.uint8) # NOTE for evaluation only. And no flip here
sample['ori_im_path'] = self.dataset["im_path"][idx]
sample['ori_gt_path'] = self.dataset["gt_path"][idx]
return sample