import pickle import matplotlib.pyplot as plt import numpy as np import torch from matplotlib import pyplot as plt from PIL import Image import os from cubercnn import util, vis from detectron2.data.catalog import MetadataCatalog from detectron2.data.detection_utils import convert_image_to_rgb from detectron2.layers.nms import batched_nms from detectron2.utils.visualizer import Visualizer from cubercnn.data.generate_depth_maps import setup_depth_model, depth_of_images def make_random_boxes(n_boxes=10): # rotation_matrix = torch.rand(3,3)*2*torch.pi rotation_matrix = torch.eye(3) # no rotation # need xyz, whl, and pose (R) # whl = torch.rand(3)*0.5 whl = torch.tensor([0.3, 0.3, 0.3]) xyz = torch.tensor([-0.1, 0, 1.7]) # xyz = torch.rand(3)*1 return xyz, whl, rotation_matrix def proposals_3d_from_2d(image, pred2d): with open('3dboxes/proposals/network_out.pkl', 'rb') as f: batched_inputs, images, features, proposals, Ks, gt_instances, im_scales_ratio, instances = pickle.load(f) n_boxes = 1 pred_xyz, pred_whl, pred_pose = make_random_boxes(n_boxes=n_boxes) pred_xyzwhl = torch.cat((pred_xyz, pred_whl), dim=0) pred_colors = torch.tensor([util.get_color(i) for i in range(n_boxes)])/255.0 pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors) input_format = 'BGR' img = batched_inputs[0]['image'] img = convert_image_to_rgb(img.permute(1, 2, 0), input_format) img_3DPR = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR input = batched_inputs[0] K = torch.tensor(input['K']) scale = input['height']/img.shape[0] K_scaled = torch.tensor( [[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]], dtype=torch.float32) @ K # convert to lists pred_meshes = [pred_meshes.__getitem__(i).detach() for i in range(len(pred_meshes))] # horizontal stack 3D GT and pred left/right # 2 box box_size = min(len(proposals[0].proposal_boxes), 2) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=proposals[0].proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() img_3DPR = vis.draw_scene_view(prop_img, K_scaled.cpu().numpy(), pred_meshes, text=['3d box'], mode='front', blend_weight=0.0, blend_weight_overlay=0.85) # vis_img_3d = img_3DPR[:, :, [2, 1, 0]] # RGB vis_img_3d = img_3DPR.astype(np.uint8) fig, ax = plt.subplots(); ax.imshow(vis_img_3d); ax.axis('off') plt.savefig(f'3dboxes/proposals/figs/pred.png', bbox_inches='tight', dpi=300) # visualize(batched_inputs, proposals, instances) return def visualize(batched_inputs, proposals, instances): # taken from the class ROIHeads3D """ A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 top-scoring predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. instances (list): a list that contains predicted RoIhead instances. Both batched_inputs and proposals should have the same length. """ max_vis_prop = 2 device = 'cpu' input_format = 'BGR' # thing_classes = MetadataCatalog.get('omni3d_model').thing_classes thing_classes = ['pedestrian', 'car', 'cyclist', 'van', 'truck', 'traffic cone', 'barrier', 'motorcycle', 'bicycle', 'bus', 'trailer', 'books', 'bottle', 'camera', 'cereal box', 'chair', 'cup', 'laptop', 'shoes', 'towel', 'blinds', 'window', 'lamp', 'shelves', 'mirror', 'sink', 'cabinet', 'bathtub', 'door', 'toilet', 'desk', 'box', 'bookcase', 'picture', 'table', 'counter', 'bed', 'night stand', 'pillow', 'sofa', 'television', 'floor mat', 'curtain', 'clothes', 'stationery', 'refrigerator', 'bin', 'stove', 'oven', 'machine'] num_classes = len(thing_classes) for i, (input, prop, instances_i) in enumerate(zip(batched_inputs, proposals, instances)): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), input_format) img_3DGT = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR img_3DPR = np.ascontiguousarray(img.copy()[:, :, [2, 1, 1]]) # BGR ''' Visualize the 2D GT and proposal predictions ''' v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img_rpn = np.concatenate((anno_img, prop_img), axis=1) # fig, ax = plt.subplots(); ax.imshow(vis_img_rpn); ax.axis('off') # plt.savefig(f'3dboxes/proposals/figs/vis_img_rpn_{i}.png', bbox_inches='tight', dpi=300) ''' Visualize the 3D GT and predictions ''' K = torch.tensor(input['K'], device=device) scale = input['height']/img.shape[0] fx, sx = (val.item()/scale for val in K[0, [0, 2]]) fy, sy = (val.item()/scale for val in K[1, [1, 2]]) K_scaled = torch.tensor( [[1/scale, 0 , 0], [0, 1/scale, 0], [0, 0, 1.0]], dtype=torch.float32, device=device ) @ K gts_per_image = input["instances"] gt_classes = gts_per_image.gt_classes # Filter out irrelevant groundtruth fg_selection_mask = (gt_classes != -1) & (gt_classes < num_classes) gt_classes = gt_classes[fg_selection_mask] gt_class_names = [thing_classes[cls_idx] for cls_idx in gt_classes] gt_boxes = gts_per_image.gt_boxes.tensor[fg_selection_mask] # 2D boxes gt_poses = gts_per_image.gt_poses[fg_selection_mask] # GT poses # projected 2D center, depth, w, h, l, 3D center gt_boxes3D = gts_per_image.gt_boxes3D[fg_selection_mask] # this box may have been mirrored and scaled so # we need to recompute XYZ in 3D by backprojecting. gt_z = gt_boxes3D[:, 2] gt_x3D = gt_z * (gt_boxes3D[:, 0] - sx)/fx gt_y3D = gt_z * (gt_boxes3D[:, 1] - sy)/fy # put together the GT boxes gt_center_3D = torch.stack((gt_x3D, gt_y3D, gt_z)).T gt_boxes3D_XYZ_WHL = torch.cat((gt_center_3D, gt_boxes3D[:, 3:6]), dim=1) gt_colors = torch.tensor( [util.get_color(i) for i in range(len(gt_boxes3D_XYZ_WHL))], device=device )/255.0 gt_meshes = util.mesh_cuboid(gt_boxes3D_XYZ_WHL, gt_poses, gt_colors) # perform a simple NMS, which is not cls dependent. keep = batched_nms( instances_i.pred_boxes.tensor, instances_i.scores, torch.zeros(len(instances_i.scores), dtype=torch.long, device=instances_i.scores.device), 0.5 # this should come from roi_heads.nms_thresh ) keep = keep[:max_vis_prop] num_to_visualize = len(keep) pred_xyzwhl = torch.cat((instances_i.pred_center_cam[keep], instances_i.pred_dimensions[keep]), dim=1) pred_pose = instances_i.pred_pose[keep] pred_colors = torch.tensor( [util.get_color(i) for i in range(num_to_visualize)], device=device )/255.0 pred_boxes = instances_i.pred_boxes[keep] pred_scores = instances_i.scores[keep] pred_classes = instances_i.pred_classes[keep] pred_class_names = ['{} {:.2f}'.format(thing_classes[cls_idx], score) for cls_idx, score in zip(pred_classes, pred_scores)] pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors) # print(pred_xyzwhl) # convert to lists pred_meshes = [pred_meshes.__getitem__(i).detach() for i in range(len(pred_meshes))] gt_meshes = [gt_meshes.__getitem__(i) for i in range(len(gt_meshes))] img_3DPR = vis.draw_scene_view(anno_img, K_scaled.cpu().numpy(), pred_meshes, text=pred_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85) img_3DGT = vis.draw_scene_view(img_3DGT, K_scaled.cpu().numpy(), gt_meshes, text=gt_class_names, mode='front', blend_weight=0.0, blend_weight_overlay=0.85) # horizontal stack 3D GT and pred left/right img_3DGT = img_3DGT[:, :, [2, 1, 0]] # RGB vis_img_3d = np.concatenate((img_3DGT, img_3DPR), axis=1) vis_img_3d = vis_img_3d.astype(np.uint8) fig, ax = plt.subplots(); ax.imshow(vis_img_3d); ax.axis('off') plt.savefig(f'3dboxes/proposals/figs/vis_img_3d_{i}.png', bbox_inches='tight', dpi=300) if __name__ == "__main__": # proposals_3d_from_2d(None, None) with open('ProposalNetwork/proposals/network_out.pkl', 'rb') as f: batched_inputs, images, features, proposals, Ks, gt_instances, im_scales_ratio, instances = pickle.load(f) n_boxes = 1 pred_xyz, pred_whl, pred_pose = make_random_boxes(n_boxes=n_boxes) pred_xyzwhl = torch.cat((pred_xyz, pred_whl), dim=0) pred_colors = torch.tensor([util.get_color(i) for i in range(n_boxes)])/255.0 pred_meshes = util.mesh_cuboid(pred_xyzwhl, pred_pose, pred_colors) input_format = 'BGR' img = batched_inputs[0]['image'] img = convert_image_to_rgb(img.permute(1, 2, 0), input_format) depth_model = 'zoedepth' # the local:: thing of the model path is just to indicate that the model is loaded local storage pretrained_resource = 'local::depth/checkpoints/depth_anything_metric_depth_indoor.pt' model = setup_depth_model(depth_model, pretrained_resource) resized_pred = depth_of_images(img, model) plt.matshow(resized_pred) plt.savefig(os.path.join('/work3/s194369/3dod/3dboxes/output/trash', 'depth_img.png'),dpi=300, bbox_inches='tight') plt.show()