_BASE_: "Base.yaml" SOLVER: TYPE: "adam" IMS_PER_BATCH: 2 BASE_LR: 0.001 STEPS: (5000, 8000) MAX_ITER: 10000 #4972 WARMUP_ITERS: 0 CHECKPOINT_PERIOD: 1000 TEST: EVAL_PERIOD: 2 VIS_PERIOD: 40 DATASETS: TRAIN: ('SUNRGBD_train_mini', 'SUNRGBD_val_mini') TEST: ('SUNRGBD_test_mini',) CATEGORY_NAMES: ('chair', 'table', 'cabinet', 'car', 'lamp', 'books', 'sofa', 'pedestrian', 'picture', 'window', 'pillow', 'truck', 'door', 'blinds', 'sink', 'shelves', 'television', 'shoes', 'cup', 'bottle', 'bookcase', 'laptop', 'desk', 'cereal box', 'floor mat', 'traffic cone', 'mirror', 'barrier', 'counter', 'camera', 'bicycle', 'toilet', 'bus', 'bed', 'refrigerator', 'trailer', 'box', 'oven', 'clothes', 'van', 'towel', 'motorcycle', 'night stand', 'stove', 'machine', 'stationery', 'bathtub', 'cyclist', 'curtain', 'bin') MODEL: ROI_HEADS: NAME: 'ROIHeads_Score' # name of the class that is the 3d predictor NUM_CLASSES: 50 POSITIVE_FRACTION: 0.25 # we can use this to control the ratio of positive to negative sampled cubes in ROI_CUBE_HEAD: NAME: 'ScoreHead' # name of the 3d head DIMS_PRIORS_ENABLED: False POOLER_TYPE: 'ROIAlignV2' POOLER_RESOLUTION: 5 META_ARCHITECTURE: 'ScoreNet' # name of the overall arch that calls the ROI_HEADS.NAME and ROI_CUBE_HEAD.NAME