# Copyright (c) Meta Platforms, Inc. and affiliates from torchvision import models from detectron2.layers import ShapeSpec from detectron2.modeling.backbone import Backbone from detectron2.modeling.backbone.fpn import LastLevelMaxPool from detectron2.modeling.backbone.resnet import build_resnet_backbone from detectron2.modeling.backbone.build import BACKBONE_REGISTRY import torch.nn.functional as F from detectron2.modeling.backbone.fpn import FPN class ResNet(Backbone): def __init__(self, cfg, input_shape, pretrained=True): super().__init__() if cfg.MODEL.RESNETS.DEPTH == 18: base = models.resnet18(pretrained) self._out_feature_channels = {'p2': 64, 'p3': 128, 'p4': 256, 'p5': 512, 'p6': 512} elif cfg.MODEL.RESNETS.DEPTH == 34: base = models.resnet34(pretrained) self._out_feature_channels = {'p2': 64, 'p3': 128, 'p4': 256, 'p5': 512, 'p6': 512} elif cfg.MODEL.RESNETS.DEPTH == 50: base = models.resnet50(pretrained) self._out_feature_channels = {'p2': 256, 'p3': 512, 'p4': 1024, 'p5': 2048, 'p6': 2048} elif cfg.MODEL.RESNETS.DEPTH == 101: base = models.resnet101(pretrained) self._out_feature_channels = {'p2': 256, 'p3': 512, 'p4': 1024, 'p5': 2048, 'p6': 2048} else: raise ValueError('No configuration currently supporting depth of {}'.format(cfg.MODEL.RESNETS.DEPTH)) self.conv1 = base.conv1 self.bn1 = base.bn1 self.relu = base.relu self.maxpool = base.maxpool self.layer1 = base.layer1 self.layer2 = base.layer2 self.layer3 = base.layer3 self.layer4 = base.layer4 self._out_feature_strides ={'p2': 4, 'p3': 8, 'p4': 16, 'p5': 32, 'p6': 64} self._out_features = ['p2', 'p3', 'p4', 'p5', 'p6'] def forward(self, x): outputs = {} x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) p2 = self.layer1(x) p3 = self.layer2(p2) p4 = self.layer3(p3) p5 = self.layer4(p4) p6 = F.max_pool2d(p5, kernel_size=1, stride=2, padding=0) outputs['p2'] = p2 outputs['p3'] = p3 outputs['p4'] = p4 outputs['p5'] = p5 outputs['p6'] = p6 return outputs @BACKBONE_REGISTRY.register() def build_resnet_from_vision_fpn_backbone(cfg, input_shape: ShapeSpec, priors=None): """ Args: cfg: a detectron2 CfgNode Returns: backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. """ imagenet_pretrain = cfg.MODEL.WEIGHTS_PRETRAIN + cfg.MODEL.WEIGHTS == '' if cfg.MODEL.RESNETS.TORCHVISION: bottom_up = ResNet(cfg, input_shape, pretrained=imagenet_pretrain) else: # use the MSRA modeling logic to build the backbone. bottom_up = build_resnet_backbone(cfg, input_shape) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) return backbone