# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ import os import random import subprocess import time from collections import OrderedDict, defaultdict, deque import datetime import pickle from typing import Optional, List import json, time import numpy as np import torch import torch.distributed as dist from torch import Tensor import colorsys import torch.nn.functional as F import cv2 # needed due to empty tensor bug in pytorch and torchvision 0.5 import torchvision class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) if d.shape[0] == 0: return 0 return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device="cuda") size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) if local_size != max_size: padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): # print(name, str(meter)) # import ipdb;ipdb.set_trace() if meter.count > 0: loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None, logger=None): if logger is None: print_func = print else: print_func = logger.info i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' if torch.cuda.is_available(): log_msg = self.delimiter.join([ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}', 'max mem: {memory:.0f}' ]) else: log_msg = self.delimiter.join([ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ]) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print_func(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print_func(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print_func('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() sha = 'N/A' diff = "clean" branch = 'N/A' try: sha = _run(['git', 'rev-parse', 'HEAD']) subprocess.check_output(['git', 'diff'], cwd=cwd) diff = _run(['git', 'diff-index', 'HEAD']) diff = "has uncommited changes" if diff else "clean" branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if 'WORLD_SIZE' in os.environ and os.environ['WORLD_SIZE'] != '': # 'RANK' in os.environ and # args.rank = int(os.environ["RANK"]) # args.world_size = int(os.environ['WORLD_SIZE']) # args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) # launch by torch.distributed.launch # Single node # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ... # Multi nodes # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... local_world_size = int(os.environ['WORLD_SIZE']) args.world_size = args.world_size * local_world_size args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) args.rank = args.rank * local_world_size + args.local_rank print('world size: {}, rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank)) print(json.dumps(dict(os.environ), indent=2)) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.local_rank = int(os.environ['SLURM_LOCALID']) args.world_size = int(os.environ['SLURM_NPROCS']) print('world size: {}, world rank: {}, local rank: {}, device_count: {}'.format(args.world_size, args.rank, args.local_rank, torch.cuda.device_count())) else: print('Not using distributed mode') args.distributed = False args.world_size = 1 args.rank = 0 args.local_rank = 0 return print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank)) args.distributed = True torch.cuda.set_device(args.local_rank) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) print("Before torch.distributed.barrier()") torch.distributed.barrier() print("End torch.distributed.barrier()") setup_for_distributed(args.rank == 0) def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) y = y.to(masks) x = x.to(masks) x_mask = ((masks>128) * x.unsqueeze(0)) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks>128), 1e8).flatten(1).min(-1)[0] y_mask = ((masks>128) * y.unsqueeze(0)) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks>128), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1) def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) def box_noise(boxes, box_noise_scale=0): known_bbox_expand = box_xyxy_to_cxcywh(boxes) diff = torch.zeros_like(known_bbox_expand) diff[:, :2] = known_bbox_expand[:, 2:] / 2 diff[:, 2:] = known_bbox_expand[:, 2:] known_bbox_expand += torch.mul((torch.rand_like(known_bbox_expand) * 2 - 1.0),diff).cuda() * box_noise_scale boxes = box_cxcywh_to_xyxy(known_bbox_expand) boxes = boxes.clamp(min=0.0, max=1024) return boxes def masks_sample_points(masks,k=10): """Sample points on mask """ if masks.numel() == 0: return torch.zeros((0, 2), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) y = y.to(masks) x = x.to(masks) # k = 10 samples = [] for b_i in range(len(masks)): select_mask = (masks[b_i]>128) x_idx = torch.masked_select(x,select_mask) y_idx = torch.masked_select(y,select_mask) perm = torch.randperm(x_idx.size(0)) idx = perm[:k] samples_x = x_idx[idx] samples_y = y_idx[idx] samples_xy = torch.cat((samples_x[:,None],samples_y[:,None]),dim=1) samples.append(samples_xy) samples = torch.stack(samples) return samples # Add noise to mask input # From Mask Transfiner https://github.com/SysCV/transfiner def masks_noise(masks): def get_incoherent_mask(input_masks, sfact): mask = input_masks.float() w = input_masks.shape[-1] h = input_masks.shape[-2] mask_small = F.interpolate(mask, (h//sfact, w//sfact), mode='bilinear') mask_recover = F.interpolate(mask_small, (h, w), mode='bilinear') mask_residue = (mask - mask_recover).abs() mask_residue = (mask_residue >= 0.01).float() return mask_residue gt_masks_vector = masks / 255 mask_noise = torch.randn(gt_masks_vector.shape, device= gt_masks_vector.device) * 1.0 inc_masks = get_incoherent_mask(gt_masks_vector, 8) gt_masks_vector = ((gt_masks_vector + mask_noise * inc_masks) > 0.5).float() gt_masks_vector = gt_masks_vector * 255 return gt_masks_vector def mask_iou(pred_label,label): ''' calculate mask iou for pred_label and gt_label ''' pred_label = (pred_label>0)[0].int() label = (label>128)[0].int() intersection = ((label * pred_label) > 0).sum() union = ((label + pred_label) > 0).sum() return intersection / union # General util function to get the boundary of a binary mask. # https://gist.github.com/bowenc0221/71f7a02afee92646ca05efeeb14d687d def mask_to_boundary(mask, dilation_ratio=0.02): """ Convert binary mask to boundary mask. :param mask (numpy array, uint8): binary mask :param dilation_ratio (float): ratio to calculate dilation = dilation_ratio * image_diagonal :return: boundary mask (numpy array) """ h, w = mask.shape img_diag = np.sqrt(h ** 2 + w ** 2) dilation = int(round(dilation_ratio * img_diag)) if dilation < 1: dilation = 1 # Pad image so mask truncated by the image border is also considered as boundary. new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) kernel = np.ones((3, 3), dtype=np.uint8) new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation) mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1] # G_d intersects G in the paper. return mask - mask_erode def boundary_iou(gt, dt, dilation_ratio=0.02): """ Compute boundary iou between two binary masks. :param gt (numpy array, uint8): binary mask :param dt (numpy array, uint8): binary mask :param dilation_ratio (float): ratio to calculate dilation = dilation_ratio * image_diagonal :return: boundary iou (float) """ device = gt.device dt = (dt>0)[0].cpu().byte().numpy() gt = (gt>128)[0].cpu().byte().numpy() gt_boundary = mask_to_boundary(gt, dilation_ratio) dt_boundary = mask_to_boundary(dt, dilation_ratio) intersection = ((gt_boundary * dt_boundary) > 0).sum() union = ((gt_boundary + dt_boundary) > 0).sum() boundary_iou = intersection / union return torch.tensor(boundary_iou).float().to(device)