_BASE_: "Base.yaml" SOLVER: TYPE: "sgd" IMS_PER_BATCH: 2 BASE_LR: 0.0001 STEPS: (5000, 12000) MAX_ITER: 10000 #4972 WARMUP_ITERS: 0 CHECKPOINT_PERIOD: 1000 TEST: EVAL_PERIOD: 100000 VIS_PERIOD: 100 DATASETS: TRAIN: ('SUNRGBD_train', 'SUNRGBD_val') TEST: ('SUNRGBD_test',) CATEGORY_NAMES: ('chair', 'table', 'cabinet', 'car', 'lamp', 'books', 'sofa', 'pedestrian', 'picture', 'window', 'pillow', 'truck', 'door', 'blinds', 'sink', 'shelves', 'television', 'shoes', 'cup', 'bottle', 'bookcase', 'laptop', 'desk', 'cereal box', 'floor mat', 'traffic cone', 'mirror', 'barrier', 'counter', 'camera', 'bicycle', 'toilet', 'bus', 'bed', 'refrigerator', 'trailer', 'box', 'oven', 'clothes', 'van', 'towel', 'motorcycle', 'night stand', 'stove', 'machine', 'stationery', 'bathtub', 'cyclist', 'curtain', 'bin') MODEL: DEPTH_ON: True #whether to use the depth anything concated features # if do not use this, then we can use ["p2", "p3", "p4", "p5", "p6"], [[32], [64], [128], [256], [512]], otherwise only ["p2", "p3", "p4", "p5"], [[32], [64], [128], [256]] DEVICE: 'cpu' FPN: IN_FEATURES: ["p2", "p3", "p4", "p5"] RPN: IN_FEATURES: ["p2", "p3", "p4", "p5"] ANCHOR_GENERATOR: SIZES: [[32], [64], [128], [256]] # One size for each in feature map ROI_HEADS: NAME: 'ROIHeads3DScore' # name of the class that is the 3d predictor IN_FEATURES: ["p2", "p3", "p4", "p5"] NUM_CLASSES: 50 POSITIVE_FRACTION: 0.25 # we can use this to control the ratio of positive to negative sampled cubes in ROI_CUBE_HEAD: NAME: 'CubeHead' # name of the 3d head DIMS_PRIORS_ENABLED: True POOLER_TYPE: 'ROIAlignV2' POOLER_RESOLUTION: 7 META_ARCHITECTURE: 'RCNN3D_combined_features' # name of the overall arch that calls the ROI_HEADS.NAME and ROI_CUBE_HEAD.NAME