# Copyright (c) Meta Platforms, Inc. and affiliates from torchvision import models from detectron2.layers import ShapeSpec from detectron2.modeling.backbone import Backbone from detectron2.modeling.backbone.build import BACKBONE_REGISTRY import torch.nn.functional as F from detectron2.modeling.backbone.fpn import FPN class MNASNetBackbone(Backbone): def __init__(self, cfg, input_shape, pretrained=True): super().__init__() base = models.mnasnet1_0(pretrained) base = base.layers self.base = base self._out_feature_channels = {'p2': 24, 'p3': 40, 'p4': 96, 'p5': 320, 'p6': 320} self._out_feature_strides ={'p2': 4, 'p3': 8, 'p4': 16, 'p5': 32, 'p6': 64} self._out_features = ['p2', 'p3', 'p4', 'p5', 'p6'] def forward(self, x): outputs = {} p2 = self.base[0:9](x) p3 = self.base[9](p2) p4 = self.base[10:12](p3) p5 = self.base[12:14](p4) p6 = F.max_pool2d(p5, kernel_size=1, stride=2, padding=0) outputs['p2'] = p2 outputs['p3'] = p3 outputs['p4'] = p4 outputs['p5'] = p5 outputs['p6'] = p6 return outputs @BACKBONE_REGISTRY.register() def build_mnasnet_fpn_backbone(cfg, input_shape: ShapeSpec, priors=None): """ Args: cfg: a detectron2 CfgNode Returns: backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. """ imagenet_pretrain = cfg.MODEL.WEIGHTS_PRETRAIN + cfg.MODEL.WEIGHTS == '' bottom_up = MNASNetBackbone(cfg, input_shape, pretrained=imagenet_pretrain) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) return backbone