AndreasThinks commited on
Commit
3bfefd7
·
verified ·
1 Parent(s): 483f229

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -58
app.py CHANGED
@@ -1,63 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
  """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
 
 
 
 
 
 
 
 
 
 
 
 
58
  ],
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import requests
3
+ import os
4
+
5
+ # Retrieve secrets
6
+ API_URL = os.environ.get("API_URL")
7
+ HF_TOKEN = os.environ.get("HF_TOKEN")
8
+
9
+ # Hugging Face Inference API details
10
+ headers = {
11
+ "Accept": "application/json",
12
+ "Authorization": f"Bearer {HF_TOKEN}",
13
+ "Content-Type": "application/json"
14
+ }
15
+
16
+ def query(payload):
17
+ response = requests.post(API_URL, headers=headers, json=payload)
18
+ return response.json()
19
+
20
+ def translate(text, source_lang, target_lang):
21
+ if source_lang == target_lang:
22
+ return text
23
+
24
+ instruction = f"Translate the text from {source_lang} to {target_lang}"
25
+
26
+ input_text = f"""### Instruction: {instruction}
27
+
28
+ ### Input: {text}
29
+
30
+ ### Response:
 
 
 
 
 
 
 
 
 
 
 
31
  """
32
+
33
+ # Generate the translation using the Hugging Face Inference API
34
+ output = query({
35
+ "inputs": input_text,
36
+ "parameters": {"max_length": 1024}
37
+ })
38
+
39
+ # Extract the translated text from the API response
40
+ # Adjust this based on the actual format of your API response
41
+ translated_text = output[0]['generated_text'].split("### Response:")[-1].strip()
42
+
43
+ return translated_text
44
+
45
+ # Create the Gradio interface
46
+ iface = gr.Interface(
47
+ fn=translate,
48
+ inputs=[
49
+ gr.Textbox(label="Enter text to translate"),
50
+ gr.Radio(["English", "Welsh"], label="Source Language", value="English"),
51
+ gr.Radio(["English", "Welsh"], label="Target Language", value="Welsh"),
52
+ ],
53
+ outputs=gr.Textbox(label="Translated Text"),
54
+ title="English-Welsh Translator",
55
+ description="Translate text between English and Welsh using a custom language model via Hugging Face Inference API.",
56
+ examples=[
57
+ ["Hello, how are you?", "English", "Welsh"],
58
+ ["Bore da!", "Welsh", "English"],
59
  ],
60
  )
61
 
62
+ # Launch the app
63
+ iface.launch()