Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
"""
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Retrieve secrets
|
6 |
+
API_URL = os.environ.get("API_URL")
|
7 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
8 |
+
|
9 |
+
# Hugging Face Inference API details
|
10 |
+
headers = {
|
11 |
+
"Accept": "application/json",
|
12 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
13 |
+
"Content-Type": "application/json"
|
14 |
+
}
|
15 |
+
|
16 |
+
def query(payload):
|
17 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
18 |
+
return response.json()
|
19 |
+
|
20 |
+
def translate(text, source_lang, target_lang):
|
21 |
+
if source_lang == target_lang:
|
22 |
+
return text
|
23 |
+
|
24 |
+
instruction = f"Translate the text from {source_lang} to {target_lang}"
|
25 |
+
|
26 |
+
input_text = f"""### Instruction: {instruction}
|
27 |
+
|
28 |
+
### Input: {text}
|
29 |
+
|
30 |
+
### Response:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
"""
|
32 |
+
|
33 |
+
# Generate the translation using the Hugging Face Inference API
|
34 |
+
output = query({
|
35 |
+
"inputs": input_text,
|
36 |
+
"parameters": {"max_length": 1024}
|
37 |
+
})
|
38 |
+
|
39 |
+
# Extract the translated text from the API response
|
40 |
+
# Adjust this based on the actual format of your API response
|
41 |
+
translated_text = output[0]['generated_text'].split("### Response:")[-1].strip()
|
42 |
+
|
43 |
+
return translated_text
|
44 |
+
|
45 |
+
# Create the Gradio interface
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=translate,
|
48 |
+
inputs=[
|
49 |
+
gr.Textbox(label="Enter text to translate"),
|
50 |
+
gr.Radio(["English", "Welsh"], label="Source Language", value="English"),
|
51 |
+
gr.Radio(["English", "Welsh"], label="Target Language", value="Welsh"),
|
52 |
+
],
|
53 |
+
outputs=gr.Textbox(label="Translated Text"),
|
54 |
+
title="English-Welsh Translator",
|
55 |
+
description="Translate text between English and Welsh using a custom language model via Hugging Face Inference API.",
|
56 |
+
examples=[
|
57 |
+
["Hello, how are you?", "English", "Welsh"],
|
58 |
+
["Bore da!", "Welsh", "English"],
|
59 |
],
|
60 |
)
|
61 |
|
62 |
+
# Launch the app
|
63 |
+
iface.launch()
|
|