import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the model and tokenizer for English to Hawaiian Pidgin translation tokenizer = AutoTokenizer.from_pretrained("claudiatang/flan-t5-base-eng-hwp") model = AutoModelForSeq2SeqLM.from_pretrained("claudiatang/flan-t5-base-eng-hwp") def translate_to_hawaiian(text): # Add language direction instruction input_text = f"translate English to Hawaiian Pidgin: {text}" # Encoding the input text for the model inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) # Generate translation using the model translated = model.generate(inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True) # Decode the generated token IDs into a string translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text # Streamlit interface st.title("Hawaiian Pidgin Translator") st.write("This app translates English text to Hawaiian Pidgin using a language model.") # Input text from the user text_input = st.text_area("Enter text to translate:") # Translate and display the result if text_input: translation = translate_to_hawaiian(text_input) st.subheader("Translation:") st.write(translation)