import gradio as gr import numpy as np import queue import torch import time import threading import os import urllib.request import torchaudio from scipy.spatial.distance import cosine from RealtimeSTT import AudioToTextRecorder from fastapi import FastAPI, APIRouter from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause, get_cloudflare_turn_credentials_async, get_cloudflare_turn_credentials import json import io import wave import asyncio import uvicorn import socket # Simplified configuration parameters SILENCE_THRESHS = [0, 0.4] FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" FINAL_BEAM_SIZE = 5 REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" REALTIME_BEAM_SIZE = 5 TRANSCRIPTION_LANGUAGE = "en" SILERO_SENSITIVITY = 0.4 WEBRTC_SENSITIVITY = 3 MIN_LENGTH_OF_RECORDING = 0.7 PRE_RECORDING_BUFFER_DURATION = 0.35 # Speaker change detection parameters DEFAULT_CHANGE_THRESHOLD = 0.7 EMBEDDING_HISTORY_SIZE = 5 MIN_SEGMENT_DURATION = 1.0 DEFAULT_MAX_SPEAKERS = 4 ABSOLUTE_MAX_SPEAKERS = 10 # Global variables FAST_SENTENCE_END = True SAMPLE_RATE = 16000 BUFFER_SIZE = 512 CHANNELS = 1 # Speaker colors SPEAKER_COLORS = [ "#FFFF00", # Yellow "#FF0000", # Red "#00FF00", # Green "#00FFFF", # Cyan "#FF00FF", # Magenta "#0000FF", # Blue "#FF8000", # Orange "#00FF80", # Spring Green "#8000FF", # Purple "#FFFFFF", # White ] SPEAKER_COLOR_NAMES = [ "Yellow", "Red", "Green", "Cyan", "Magenta", "Blue", "Orange", "Spring Green", "Purple", "White" ] class SpeechBrainEncoder: """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" def __init__(self, device="cpu"): self.device = device self.model = None self.embedding_dim = 192 self.model_loaded = False self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") os.makedirs(self.cache_dir, exist_ok=True) def _download_model(self): """Download pre-trained SpeechBrain ECAPA-TDNN model if not present""" model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt" model_path = os.path.join(self.cache_dir, "embedding_model.ckpt") if not os.path.exists(model_path): print(f"Downloading ECAPA-TDNN model to {model_path}...") urllib.request.urlretrieve(model_url, model_path) return model_path def load_model(self): """Load the ECAPA-TDNN model""" try: from speechbrain.pretrained import EncoderClassifier model_path = self._download_model() self.model = EncoderClassifier.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir=self.cache_dir, run_opts={"device": self.device} ) self.model_loaded = True return True except Exception as e: print(f"Error loading ECAPA-TDNN model: {e}") return False def embed_utterance(self, audio, sr=16000): """Extract speaker embedding from audio""" if not self.model_loaded: raise ValueError("Model not loaded. Call load_model() first.") try: if isinstance(audio, np.ndarray): waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0) else: waveform = audio.unsqueeze(0) if sr != 16000: waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) with torch.no_grad(): embedding = self.model.encode_batch(waveform) return embedding.squeeze().cpu().numpy() except Exception as e: print(f"Error extracting embedding: {e}") return np.zeros(self.embedding_dim) class AudioProcessor: """Processes audio data to extract speaker embeddings""" def __init__(self, encoder): self.encoder = encoder def extract_embedding(self, audio_int16): try: float_audio = audio_int16.astype(np.float32) / 32768.0 if np.abs(float_audio).max() > 1.0: float_audio = float_audio / np.abs(float_audio).max() embedding = self.encoder.embed_utterance(float_audio) return embedding except Exception as e: print(f"Embedding extraction error: {e}") return np.zeros(self.encoder.embedding_dim) class SpeakerChangeDetector: """Speaker change detector that supports a configurable number of speakers""" def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): self.embedding_dim = embedding_dim self.change_threshold = change_threshold self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) self.current_speaker = 0 self.previous_embeddings = [] self.last_change_time = time.time() self.mean_embeddings = [None] * self.max_speakers self.speaker_embeddings = [[] for _ in range(self.max_speakers)] self.last_similarity = 0.0 self.active_speakers = set([0]) def set_max_speakers(self, max_speakers): """Update the maximum number of speakers""" new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) if new_max < self.max_speakers: for speaker_id in list(self.active_speakers): if speaker_id >= new_max: self.active_speakers.discard(speaker_id) if self.current_speaker >= new_max: self.current_speaker = 0 if new_max > self.max_speakers: self.mean_embeddings.extend([None] * (new_max - self.max_speakers)) self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) else: self.mean_embeddings = self.mean_embeddings[:new_max] self.speaker_embeddings = self.speaker_embeddings[:new_max] self.max_speakers = new_max def set_change_threshold(self, threshold): """Update the threshold for detecting speaker changes""" self.change_threshold = max(0.1, min(threshold, 0.99)) def add_embedding(self, embedding, timestamp=None): """Add a new embedding and check if there's a speaker change""" current_time = timestamp or time.time() if not self.previous_embeddings: self.previous_embeddings.append(embedding) self.speaker_embeddings[self.current_speaker].append(embedding) if self.mean_embeddings[self.current_speaker] is None: self.mean_embeddings[self.current_speaker] = embedding.copy() return self.current_speaker, 1.0 current_mean = self.mean_embeddings[self.current_speaker] if current_mean is not None: similarity = 1.0 - cosine(embedding, current_mean) else: similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1]) self.last_similarity = similarity time_since_last_change = current_time - self.last_change_time is_speaker_change = False if time_since_last_change >= MIN_SEGMENT_DURATION: if similarity < self.change_threshold: best_speaker = self.current_speaker best_similarity = similarity for speaker_id in range(self.max_speakers): if speaker_id == self.current_speaker: continue speaker_mean = self.mean_embeddings[speaker_id] if speaker_mean is not None: speaker_similarity = 1.0 - cosine(embedding, speaker_mean) if speaker_similarity > best_similarity: best_similarity = speaker_similarity best_speaker = speaker_id if best_speaker != self.current_speaker: is_speaker_change = True self.current_speaker = best_speaker elif len(self.active_speakers) < self.max_speakers: for new_id in range(self.max_speakers): if new_id not in self.active_speakers: is_speaker_change = True self.current_speaker = new_id self.active_speakers.add(new_id) break if is_speaker_change: self.last_change_time = current_time self.previous_embeddings.append(embedding) if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE: self.previous_embeddings.pop(0) self.speaker_embeddings[self.current_speaker].append(embedding) self.active_speakers.add(self.current_speaker) if len(self.speaker_embeddings[self.current_speaker]) > 30: self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:] if self.speaker_embeddings[self.current_speaker]: self.mean_embeddings[self.current_speaker] = np.mean( self.speaker_embeddings[self.current_speaker], axis=0 ) return self.current_speaker, similarity def get_color_for_speaker(self, speaker_id): """Return color for speaker ID""" if 0 <= speaker_id < len(SPEAKER_COLORS): return SPEAKER_COLORS[speaker_id] return "#FFFFFF" def get_status_info(self): """Return status information about the speaker change detector""" speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] return { "current_speaker": self.current_speaker, "speaker_counts": speaker_counts, "active_speakers": len(self.active_speakers), "max_speakers": self.max_speakers, "last_similarity": self.last_similarity, "threshold": self.change_threshold } class RealtimeSpeakerDiarization: def __init__(self): self.encoder = None self.audio_processor = None self.speaker_detector = None self.recorder = None self.sentence_queue = queue.Queue() self.full_sentences = [] self.sentence_speakers = [] self.pending_sentences = [] self.displayed_text = "" self.last_realtime_text = "" self.is_running = False self.change_threshold = DEFAULT_CHANGE_THRESHOLD self.max_speakers = DEFAULT_MAX_SPEAKERS self.current_conversation = "" self.audio_buffer = [] def initialize_models(self): """Initialize the speaker encoder model""" try: device_str = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device_str}") self.encoder = SpeechBrainEncoder(device=device_str) success = self.encoder.load_model() if success: self.audio_processor = AudioProcessor(self.encoder) self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) print("ECAPA-TDNN model loaded successfully!") return True else: print("Failed to load ECAPA-TDNN model") return False except Exception as e: print(f"Model initialization error: {e}") return False def live_text_detected(self, text): """Callback for real-time transcription updates""" text = text.strip() if text: sentence_delimiters = '.?!。' prob_sentence_end = ( len(self.last_realtime_text) > 0 and text[-1] in sentence_delimiters and self.last_realtime_text[-1] in sentence_delimiters ) self.last_realtime_text = text if prob_sentence_end and FAST_SENTENCE_END: self.recorder.stop() elif prob_sentence_end: self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0] else: self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1] def process_final_text(self, text): """Process final transcribed text with speaker embedding""" text = text.strip() if text: try: bytes_data = self.recorder.last_transcription_bytes self.sentence_queue.put((text, bytes_data)) self.pending_sentences.append(text) except Exception as e: print(f"Error processing final text: {e}") def process_sentence_queue(self): """Process sentences in the queue for speaker detection""" while self.is_running: try: text, bytes_data = self.sentence_queue.get(timeout=1) # Convert audio data to int16 audio_int16 = np.frombuffer(bytes_data, dtype=np.int16) # Extract speaker embedding speaker_embedding = self.audio_processor.extract_embedding(audio_int16) # Store sentence and embedding self.full_sentences.append((text, speaker_embedding)) # Fill in missing speaker assignments while len(self.sentence_speakers) < len(self.full_sentences) - 1: self.sentence_speakers.append(0) # Detect speaker changes speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding) self.sentence_speakers.append(speaker_id) # Remove from pending if text in self.pending_sentences: self.pending_sentences.remove(text) # Update conversation display self.current_conversation = self.get_formatted_conversation() except queue.Empty: continue except Exception as e: print(f"Error processing sentence: {e}") def start_recording(self): """Start the recording and transcription process""" if self.encoder is None: return "Please initialize models first!" try: # Setup recorder configuration for manual audio input recorder_config = { 'spinner': False, 'use_microphone': False, # We'll feed audio manually 'model': FINAL_TRANSCRIPTION_MODEL, 'language': TRANSCRIPTION_LANGUAGE, 'silero_sensitivity': SILERO_SENSITIVITY, 'webrtc_sensitivity': WEBRTC_SENSITIVITY, 'post_speech_silence_duration': SILENCE_THRESHS[1], 'min_length_of_recording': MIN_LENGTH_OF_RECORDING, 'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION, 'min_gap_between_recordings': 0, 'enable_realtime_transcription': True, 'realtime_processing_pause': 0, 'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL, 'on_realtime_transcription_update': self.live_text_detected, 'beam_size': FINAL_BEAM_SIZE, 'beam_size_realtime': REALTIME_BEAM_SIZE, 'buffer_size': BUFFER_SIZE, 'sample_rate': SAMPLE_RATE, } self.recorder = AudioToTextRecorder(**recorder_config) # Start sentence processing thread self.is_running = True self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True) self.sentence_thread.start() # Start transcription thread self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True) self.transcription_thread.start() return "Recording started successfully! FastRTC audio input ready." except Exception as e: return f"Error starting recording: {e}" def run_transcription(self): """Run the transcription loop""" try: while self.is_running: self.recorder.text(self.process_final_text) except Exception as e: print(f"Transcription error: {e}") def stop_recording(self): """Stop the recording process""" self.is_running = False if self.recorder: self.recorder.stop() return "Recording stopped!" def clear_conversation(self): """Clear all conversation data""" self.full_sentences = [] self.sentence_speakers = [] self.pending_sentences = [] self.displayed_text = "" self.last_realtime_text = "" self.current_conversation = "Conversation cleared!" if self.speaker_detector: self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) return "Conversation cleared!" def update_settings(self, threshold, max_speakers): """Update speaker detection settings""" self.change_threshold = threshold self.max_speakers = max_speakers if self.speaker_detector: self.speaker_detector.set_change_threshold(threshold) self.speaker_detector.set_max_speakers(max_speakers) return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" def get_formatted_conversation(self): """Get the formatted conversation with speaker colors""" try: sentences_with_style = [] # Process completed sentences for i, sentence in enumerate(self.full_sentences): sentence_text, _ = sentence if i >= len(self.sentence_speakers): color = "#FFFFFF" speaker_name = "Unknown" else: speaker_id = self.sentence_speakers[i] color = self.speaker_detector.get_color_for_speaker(speaker_id) speaker_name = f"Speaker {speaker_id + 1}" sentences_with_style.append( f'{speaker_name}: {sentence_text}') # Add pending sentences for pending_sentence in self.pending_sentences: sentences_with_style.append( f'Processing: {pending_sentence}') if sentences_with_style: return "

".join(sentences_with_style) else: return "Waiting for speech input..." except Exception as e: return f"Error formatting conversation: {e}" def get_status_info(self): """Get current status information""" if not self.speaker_detector: return "Speaker detector not initialized" try: status = self.speaker_detector.get_status_info() status_lines = [ f"**Current Speaker:** {status['current_speaker'] + 1}", f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}", f"**Last Similarity:** {status['last_similarity']:.3f}", f"**Change Threshold:** {status['threshold']:.2f}", f"**Total Sentences:** {len(self.full_sentences)}", "", "**Speaker Segment Counts:**" ] for i in range(status['max_speakers']): color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}") return "\n".join(status_lines) except Exception as e: return f"Error getting status: {e}" def feed_audio_data(self, audio_data): """Feed audio data to the recorder""" if not self.is_running or not self.recorder: return try: # Ensure audio is in the correct format (16-bit PCM) if isinstance(audio_data, np.ndarray): if audio_data.dtype != np.int16: # Convert float to int16 if audio_data.dtype == np.float32 or audio_data.dtype == np.float64: audio_data = (audio_data * 32767).astype(np.int16) else: audio_data = audio_data.astype(np.int16) # Convert to bytes audio_bytes = audio_data.tobytes() else: audio_bytes = audio_data # Feed to recorder self.recorder.feed_audio(audio_bytes) except Exception as e: print(f"Error feeding audio data: {e}") # FastRTC Audio Handler class DiarizationHandler(AsyncStreamHandler): def __init__(self, diarization_system): super().__init__() self.diarization_system = diarization_system def copy(self): # Return a fresh handler for each new stream connection return DiarizationHandler(self.diarization_system) async def emit(self): """Not used in this implementation""" return None async def receive(self, frame): """Receive audio data from FastRTC and process it""" try: if self.diarization_system.is_running: # Frame should be a numpy array of audio data if hasattr(frame, 'data'): audio_data = frame.data else: audio_data = frame # Feed audio data to the diarization system self.diarization_system.feed_audio_data(audio_data) except Exception as e: print(f"Error in FastRTC handler: {e}") # Global instance diarization_system = RealtimeSpeakerDiarization() def initialize_system(): """Initialize the diarization system""" success = diarization_system.initialize_models() if success: return "✅ System initialized successfully! Models loaded." else: return "❌ Failed to initialize system. Please check the logs." def start_recording(): """Start recording and transcription""" return diarization_system.start_recording() def stop_recording(): """Stop recording and transcription""" return diarization_system.stop_recording() def clear_conversation(): """Clear the conversation""" return diarization_system.clear_conversation() def update_settings(threshold, max_speakers): """Update system settings""" return diarization_system.update_settings(threshold, max_speakers) def get_conversation(): """Get the current conversation""" return diarization_system.get_formatted_conversation() def get_status(): """Get system status""" return diarization_system.get_status_info() # Create Gradio interface def create_interface(): with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface: gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization") gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding.") with gr.Row(): with gr.Column(scale=2): # Main conversation display conversation_output = gr.HTML( value="Click 'Initialize System' to start...", label="Live Conversation" ) # Control buttons with gr.Row(): init_btn = gr.Button("🔧 Initialize System", variant="secondary") start_btn = gr.Button("đŸŽ™ī¸ Start Recording", variant="primary", interactive=False) stop_btn = gr.Button("âšī¸ Stop Recording", variant="stop", interactive=False) clear_btn = gr.Button("đŸ—‘ī¸ Clear Conversation", interactive=False) # Status display status_output = gr.Textbox( label="System Status", value="System not initialized", lines=8, interactive=False ) with gr.Column(scale=1): # Settings panel gr.Markdown("## âš™ī¸ Settings") threshold_slider = gr.Slider( minimum=0.1, maximum=0.95, step=0.05, value=DEFAULT_CHANGE_THRESHOLD, label="Speaker Change Sensitivity", info="Lower values = more sensitive to speaker changes" ) max_speakers_slider = gr.Slider( minimum=2, maximum=ABSOLUTE_MAX_SPEAKERS, step=1, value=DEFAULT_MAX_SPEAKERS, label="Maximum Number of Speakers" ) update_settings_btn = gr.Button("Update Settings") # Instructions gr.Markdown("## 📝 Instructions") gr.Markdown(""" 1. Click **Initialize System** to load models 2. Click **Start Recording** to begin processing 3. Use the FastRTC interface below to connect your microphone 4. Allow microphone access when prompted 5. Speak into your microphone 6. Watch real-time transcription with speaker labels 7. Adjust settings as needed """) # Speaker color legend gr.Markdown("## 🎨 Speaker Colors") color_info = [] for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)): color_info.append(f'■ Speaker {i+1} ({name})') gr.HTML("
".join(color_info[:DEFAULT_MAX_SPEAKERS])) # FastRTC Integration Notice gr.Markdown(""" ## â„šī¸ About FastRTC This app uses FastRTC for low-latency audio streaming. For optimal performance, use a modern browser and allow microphone access when prompted. """) # Auto-refresh conversation and status def refresh_display(): return diarization_system.get_formatted_conversation(), diarization_system.get_status_info() # Event handlers def on_initialize(): result = initialize_system() if "successfully" in result: return ( result, gr.update(interactive=True), # start_btn gr.update(interactive=True), # clear_btn get_conversation(), get_status() ) else: return ( result, gr.update(interactive=False), # start_btn gr.update(interactive=False), # clear_btn get_conversation(), get_status() ) def on_start(): result = start_recording() return ( result, gr.update(interactive=False), # start_btn gr.update(interactive=True), # stop_btn ) def on_stop(): result = stop_recording() return ( result, gr.update(interactive=True), # start_btn gr.update(interactive=False), # stop_btn ) # Connect event handlers init_btn.click( on_initialize, outputs=[status_output, start_btn, clear_btn, conversation_output, status_output] ) start_btn.click( on_start, outputs=[status_output, start_btn, stop_btn] ) stop_btn.click( on_stop, outputs=[status_output, start_btn, stop_btn] ) clear_btn.click( clear_conversation, outputs=[status_output] ) update_settings_btn.click( update_settings, inputs=[threshold_slider, max_speakers_slider], outputs=[status_output] ) # Auto-refresh every 2 seconds when recording refresh_timer = gr.Timer(2.0) refresh_timer.tick( refresh_display, outputs=[conversation_output, status_output] ) return interface # Create API router for endpoints router = APIRouter() # Health check endpoint @router.get("/health") async def health_check(): """Health check endpoint""" return { "status": "healthy", "timestamp": time.time(), "system_initialized": diarization_system.encoder is not None, "recording_active": diarization_system.is_running } # API endpoint to get conversation @router.get("/api/conversation") async def get_conversation_api(): """API endpoint to get current conversation""" return { "conversation": diarization_system.get_formatted_conversation(), "status": diarization_system.get_status_info(), "is_recording": diarization_system.is_running } # API endpoint to control recording @router.post("/api/control/{{action}}") async def control_recording(action: str): """API endpoint to control recording (start/stop/clear/initialize)""" if action == "start": result = diarization_system.start_recording() elif action == "stop": result = diarization_system.stop_recording() elif action == "clear": result = diarization_system.clear_conversation() elif action == "initialize": result = initialize_system() else: return {"error": "Invalid action. Use: start, stop, clear, or initialize"} return {"result": result, "is_recording": diarization_system.is_running} # Main application setup def create_app(): """Create and configure the FastAPI app with Gradio and FastRTC""" # Create FastAPI app app = FastAPI( title="Real-time Speaker Diarization", description="Real-time speech recognition with speaker diarization using FastRTC", version="1.0.0" ) # Include API routes app.include_router(router) # Create Gradio interface gradio_interface = create_interface() # Mount Gradio interface app = gr.mount_gradio_app(app, gradio_interface, path="/") # Setup FastRTC stream try: # Create the handler handler = DiarizationHandler(diarization_system) # Get TURN credentials hf_token = os.environ.get("HF_TOKEN") if not hf_token: print("Warning: HF_TOKEN not set. Audio streaming may not work properly.") # Use basic STUN server as fallback rtc_config = { "iceServers": [{"urls": "stun:stun.l.google.com:19302"}] } else: # Get Cloudflare TURN credentials try: turn_credentials = get_cloudflare_turn_credentials(hf_token) # Safely extract credentials from the response ice_servers = [] # Always add STUN server ice_servers.append({"urls": "stun:stun.l.google.com:19302"}) # Check for and add TURN server if available if turn_credentials and isinstance(turn_credentials, dict): # Handle different possible structures if 'iceServers' in turn_credentials: # If credentials already have iceServers, use them directly rtc_config = turn_credentials elif 'urls' in turn_credentials and isinstance(turn_credentials['urls'], list) and turn_credentials['urls']: # Structure: {urls: [...], username: "...", credential: "..."} ice_servers.append({ "urls": [f"turn:{url}" for url in turn_credentials["urls"]], "username": turn_credentials.get("username", ""), "credential": turn_credentials.get("credential", "") }) rtc_config = {"iceServers": ice_servers} elif 'url' in turn_credentials: # Structure with single URL ice_servers.append({ "urls": f"turn:{turn_credentials['url']}", "username": turn_credentials.get("username", ""), "credential": turn_credentials.get("credential", "") }) rtc_config = {"iceServers": ice_servers} else: print("Warning: Unexpected TURN credentials format. Using STUN only.") rtc_config = {"iceServers": ice_servers} else: print("Warning: Could not get TURN credentials. Using STUN only.") rtc_config = {"iceServers": ice_servers} except Exception as e: print(f"Warning: Error getting TURN credentials: {e}. Using STUN only.") rtc_config = { "iceServers": [{"urls": "stun:stun.l.google.com:19302"}] } # Create FastRTC stream stream = Stream( handler=handler, rtc_configuration=rtc_config, modality="audio", mode="send-receive" ) # Mount the FastRTC stream to the FastAPI app stream.mount(app) print("FastRTC stream configured successfully!") except Exception as e: print(f"Warning: Failed to setup FastRTC stream: {e}") print("Audio streaming will not be available.") return app # Main entry point if __name__ == "__main__": # Create the app app = create_app() # Configuration host = os.environ.get("HOST", "0.0.0.0") port = int(os.environ.get("PORT", 7860)) # Find available port if specified port is in use def find_available_port(start_port=7860, max_tries=10): """Find an available port starting from start_port""" for port_offset in range(max_tries): port = start_port + port_offset try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(('0.0.0.0', port)) sock.close() return port except OSError: continue # If no ports are available, return a default and let the server handle the error return start_port available_port = find_available_port(port) if available_port != port: print(f"Port {port} is in use, using port {available_port} instead.") port = available_port print(f""" 🎤 Real-time Speaker Diarization Server ===================================== Starting server on: http://{host}:{port} Features: - Real-time speech recognition - Speaker diarization with color coding - FastRTC low-latency audio streaming - Web interface for easy interaction Make sure to: 1. Set HF_TOKEN environment variable for TURN server access 2. Allow microphone access in your browser 3. Use a modern browser for best performance API Endpoints: - GET /health - Health check - GET /api/conversation - Get current conversation - POST /api/control/{{action}} - Control recording (start/stop/clear/initialize) - WS /stream/webrtc - FastRTC WebRTC endpoint """) # Run the server uvicorn.run( app, host=host, port=port, log_level="info", access_log=True )