import gradio as gr import numpy as np import queue import torch import time import threading import os import urllib.request import torchaudio from scipy.spatial.distance import cosine import json import io import wave # Simplified configuration parameters SILENCE_THRESHS = [0, 0.4] FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" FINAL_BEAM_SIZE = 5 REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" REALTIME_BEAM_SIZE = 5 TRANSCRIPTION_LANGUAGE = "en" SILERO_SENSITIVITY = 0.4 WEBRTC_SENSITIVITY = 3 MIN_LENGTH_OF_RECORDING = 0.7 PRE_RECORDING_BUFFER_DURATION = 0.35 # Speaker change detection parameters DEFAULT_CHANGE_THRESHOLD = 0.7 EMBEDDING_HISTORY_SIZE = 5 MIN_SEGMENT_DURATION = 1.0 DEFAULT_MAX_SPEAKERS = 4 ABSOLUTE_MAX_SPEAKERS = 10 # Global variables FAST_SENTENCE_END = True SAMPLE_RATE = 16000 BUFFER_SIZE = 512 CHANNELS = 1 # Speaker colors SPEAKER_COLORS = [ "#FFFF00", # Yellow "#FF0000", # Red "#00FF00", # Green "#00FFFF", # Cyan "#FF00FF", # Magenta "#0000FF", # Blue "#FF8000", # Orange "#00FF80", # Spring Green "#8000FF", # Purple "#FFFFFF", # White ] SPEAKER_COLOR_NAMES = [ "Yellow", "Red", "Green", "Cyan", "Magenta", "Blue", "Orange", "Spring Green", "Purple", "White" ] class SpeechBrainEncoder: """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" def __init__(self, device="cpu"): self.device = device self.model = None self.embedding_dim = 192 self.model_loaded = False self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") os.makedirs(self.cache_dir, exist_ok=True) def _download_model(self): """Download pre-trained SpeechBrain ECAPA-TDNN model if not present""" model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt" model_path = os.path.join(self.cache_dir, "embedding_model.ckpt") if not os.path.exists(model_path): print(f"Downloading ECAPA-TDNN model to {model_path}...") urllib.request.urlretrieve(model_url, model_path) return model_path def load_model(self): """Load the ECAPA-TDNN model""" try: from speechbrain.pretrained import EncoderClassifier model_path = self._download_model() self.model = EncoderClassifier.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir=self.cache_dir, run_opts={"device": self.device} ) self.model_loaded = True return True except Exception as e: print(f"Error loading ECAPA-TDNN model: {e}") return False def embed_utterance(self, audio, sr=16000): """Extract speaker embedding from audio""" if not self.model_loaded: raise ValueError("Model not loaded. Call load_model() first.") try: if isinstance(audio, np.ndarray): waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0) else: waveform = audio.unsqueeze(0) if sr != 16000: waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) with torch.no_grad(): embedding = self.model.encode_batch(waveform) return embedding.squeeze().cpu().numpy() except Exception as e: print(f"Error extracting embedding: {e}") return np.zeros(self.embedding_dim) class AudioProcessor: """Processes audio data to extract speaker embeddings""" def __init__(self, encoder): self.encoder = encoder def extract_embedding(self, audio_float): try: # Ensure audio is in the right format if np.abs(audio_float).max() > 1.0: audio_float = audio_float / np.abs(audio_float).max() embedding = self.encoder.embed_utterance(audio_float) return embedding except Exception as e: print(f"Embedding extraction error: {e}") return np.zeros(self.encoder.embedding_dim) class SpeakerChangeDetector: """Speaker change detector that supports a configurable number of speakers""" def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): self.embedding_dim = embedding_dim self.change_threshold = change_threshold self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) self.current_speaker = 0 self.previous_embeddings = [] self.last_change_time = time.time() self.mean_embeddings = [None] * self.max_speakers self.speaker_embeddings = [[] for _ in range(self.max_speakers)] self.last_similarity = 0.0 self.active_speakers = set([0]) def set_max_speakers(self, max_speakers): """Update the maximum number of speakers""" new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) if new_max < self.max_speakers: for speaker_id in list(self.active_speakers): if speaker_id >= new_max: self.active_speakers.discard(speaker_id) if self.current_speaker >= new_max: self.current_speaker = 0 if new_max > self.max_speakers: self.mean_embeddings.extend([None] * (new_max - self.max_speakers)) self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) else: self.mean_embeddings = self.mean_embeddings[:new_max] self.speaker_embeddings = self.speaker_embeddings[:new_max] self.max_speakers = new_max def set_change_threshold(self, threshold): """Update the threshold for detecting speaker changes""" self.change_threshold = max(0.1, min(threshold, 0.99)) def add_embedding(self, embedding, timestamp=None): """Add a new embedding and check if there's a speaker change""" current_time = timestamp or time.time() if not self.previous_embeddings: self.previous_embeddings.append(embedding) self.speaker_embeddings[self.current_speaker].append(embedding) if self.mean_embeddings[self.current_speaker] is None: self.mean_embeddings[self.current_speaker] = embedding.copy() return self.current_speaker, 1.0 current_mean = self.mean_embeddings[self.current_speaker] if current_mean is not None: similarity = 1.0 - cosine(embedding, current_mean) else: similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1]) self.last_similarity = similarity time_since_last_change = current_time - self.last_change_time is_speaker_change = False if time_since_last_change >= MIN_SEGMENT_DURATION: if similarity < self.change_threshold: best_speaker = self.current_speaker best_similarity = similarity for speaker_id in range(self.max_speakers): if speaker_id == self.current_speaker: continue speaker_mean = self.mean_embeddings[speaker_id] if speaker_mean is not None: speaker_similarity = 1.0 - cosine(embedding, speaker_mean) if speaker_similarity > best_similarity: best_similarity = speaker_similarity best_speaker = speaker_id if best_speaker != self.current_speaker: is_speaker_change = True self.current_speaker = best_speaker elif len(self.active_speakers) < self.max_speakers: for new_id in range(self.max_speakers): if new_id not in self.active_speakers: is_speaker_change = True self.current_speaker = new_id self.active_speakers.add(new_id) break if is_speaker_change: self.last_change_time = current_time self.previous_embeddings.append(embedding) if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE: self.previous_embeddings.pop(0) self.speaker_embeddings[self.current_speaker].append(embedding) self.active_speakers.add(self.current_speaker) if len(self.speaker_embeddings[self.current_speaker]) > 30: self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:] if self.speaker_embeddings[self.current_speaker]: self.mean_embeddings[self.current_speaker] = np.mean( self.speaker_embeddings[self.current_speaker], axis=0 ) return self.current_speaker, similarity def get_color_for_speaker(self, speaker_id): """Return color for speaker ID""" if 0 <= speaker_id < len(SPEAKER_COLORS): return SPEAKER_COLORS[speaker_id] return "#FFFFFF" def get_status_info(self): """Return status information about the speaker change detector""" speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] return { "current_speaker": self.current_speaker, "speaker_counts": speaker_counts, "active_speakers": len(self.active_speakers), "max_speakers": self.max_speakers, "last_similarity": self.last_similarity, "threshold": self.change_threshold } class WhisperTranscriber: """Simple Whisper transcriber for audio chunks""" def __init__(self, model_name="distil-large-v3"): self.model = None self.processor = None self.model_name = model_name self.device = "cuda" if torch.cuda.is_available() else "cpu" def load_model(self): """Load Whisper model""" try: from transformers import WhisperProcessor, WhisperForConditionalGeneration self.processor = WhisperProcessor.from_pretrained(f"distil-whisper/{self.model_name}") self.model = WhisperForConditionalGeneration.from_pretrained(f"distil-whisper/{self.model_name}") self.model.to(self.device) return True except Exception as e: print(f"Error loading Whisper model: {e}") return False def transcribe(self, audio_array, sample_rate=16000): """Transcribe audio array""" try: if self.model is None: return "" # Ensure audio is the right sample rate if sample_rate != 16000: audio_array = torchaudio.functional.resample( torch.tensor(audio_array).float(), orig_freq=sample_rate, new_freq=16000 ).numpy() # Process audio inputs = self.processor(audio_array, sampling_rate=16000, return_tensors="pt") inputs = inputs.to(self.device) # Generate transcription with torch.no_grad(): predicted_ids = self.model.generate(inputs["input_features"]) # Decode transcription transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] if transcription else "" except Exception as e: print(f"Transcription error: {e}") return "" class RealtimeSpeakerDiarization: def __init__(self): self.encoder = None self.audio_processor = None self.speaker_detector = None self.transcriber = None self.audio_buffer = [] self.processing_thread = None self.sentence_queue = queue.Queue() self.full_sentences = [] self.sentence_speakers = [] self.pending_sentences = [] self.displayed_text = "" self.is_running = False self.change_threshold = DEFAULT_CHANGE_THRESHOLD self.max_speakers = DEFAULT_MAX_SPEAKERS self.audio_chunks = [] self.chunk_counter = 0 def initialize_models(self): """Initialize the speaker encoder and transcription models""" try: device_str = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device_str}") # Initialize speaker encoder self.encoder = SpeechBrainEncoder(device=device_str) encoder_success = self.encoder.load_model() # Initialize transcriber self.transcriber = WhisperTranscriber(FINAL_TRANSCRIPTION_MODEL) transcriber_success = self.transcriber.load_model() if encoder_success and transcriber_success: self.audio_processor = AudioProcessor(self.encoder) self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) print("Models loaded successfully!") return True else: print("Failed to load models") return False except Exception as e: print(f"Model initialization error: {e}") return False def process_audio_stream(self, audio_data, sample_rate): """Process incoming audio stream data""" if not self.is_running or self.encoder is None: return try: # Convert audio data to numpy array if needed if isinstance(audio_data, tuple): sample_rate, audio_array = audio_data else: audio_array = audio_data # Ensure audio is float32 and normalized if audio_array.dtype != np.float32: if audio_array.dtype == np.int16: audio_array = audio_array.astype(np.float32) / 32768.0 else: audio_array = audio_array.astype(np.float32) # Ensure mono audio if len(audio_array.shape) > 1 and audio_array.shape[1] > 1: audio_array = np.mean(audio_array, axis=1) # Add to buffer self.audio_buffer.extend(audio_array.flatten()) # Process when we have enough audio (about 2 seconds) target_length = int(sample_rate * 2.0) if len(self.audio_buffer) >= target_length: self.process_audio_chunk() except Exception as e: print(f"Error processing audio stream: {e}") def process_audio_chunk(self): """Process accumulated audio chunk""" try: if len(self.audio_buffer) < SAMPLE_RATE: # Need at least 1 second return # Get audio chunk audio_chunk = np.array(self.audio_buffer[:int(SAMPLE_RATE * 2)]) self.audio_buffer = self.audio_buffer[int(SAMPLE_RATE * 1.5):] # Keep some overlap # Transcribe audio transcription = self.transcriber.transcribe(audio_chunk, SAMPLE_RATE) if transcription.strip(): # Extract speaker embedding speaker_embedding = self.audio_processor.extract_embedding(audio_chunk) # Add to queue for processing self.sentence_queue.put((transcription.strip(), speaker_embedding)) except Exception as e: print(f"Error processing audio chunk: {e}") def process_sentence_queue(self): """Process sentences in the queue for speaker detection""" while self.is_running: try: text, speaker_embedding = self.sentence_queue.get(timeout=1) # Store sentence and embedding self.full_sentences.append((text, speaker_embedding)) # Fill in missing speaker assignments while len(self.sentence_speakers) < len(self.full_sentences) - 1: self.sentence_speakers.append(0) # Detect speaker changes speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding) self.sentence_speakers.append(speaker_id) except queue.Empty: continue except Exception as e: print(f"Error processing sentence: {e}") def start_recording(self): """Start the recording and transcription process""" if self.encoder is None: return "Please initialize models first!" try: # Start sentence processing thread self.is_running = True self.processing_thread = threading.Thread(target=self.process_sentence_queue, daemon=True) self.processing_thread.start() return "Recording started successfully! Start speaking into your microphone." except Exception as e: return f"Error starting recording: {e}" def stop_recording(self): """Stop the recording process""" self.is_running = False self.audio_buffer = [] return "Recording stopped!" def clear_conversation(self): """Clear all conversation data""" self.full_sentences = [] self.sentence_speakers = [] self.pending_sentences = [] self.displayed_text = "" self.audio_buffer = [] if self.speaker_detector: self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) return "Conversation cleared!" def update_settings(self, threshold, max_speakers): """Update speaker detection settings""" self.change_threshold = threshold self.max_speakers = max_speakers if self.speaker_detector: self.speaker_detector.set_change_threshold(threshold) self.speaker_detector.set_max_speakers(max_speakers) return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" def get_formatted_conversation(self): """Get the formatted conversation with speaker colors""" try: sentences_with_style = [] # Process completed sentences for i, sentence in enumerate(self.full_sentences): sentence_text, _ = sentence if i >= len(self.sentence_speakers): color = "#FFFFFF" speaker_name = "Speaker ?" else: speaker_id = self.sentence_speakers[i] color = self.speaker_detector.get_color_for_speaker(speaker_id) speaker_name = f"Speaker {speaker_id + 1}" sentences_with_style.append( f'{speaker_name}: {sentence_text}') if sentences_with_style: return "

".join(sentences_with_style) else: return "Waiting for speech input..." except Exception as e: return f"Error formatting conversation: {e}" def get_status_info(self): """Get current status information""" if not self.speaker_detector: return "Speaker detector not initialized" try: status = self.speaker_detector.get_status_info() status_lines = [ f"**Current Speaker:** {status['current_speaker'] + 1}", f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}", f"**Last Similarity:** {status['last_similarity']:.3f}", f"**Change Threshold:** {status['threshold']:.2f}", f"**Total Sentences:** {len(self.full_sentences)}", f"**Audio Buffer Size:** {len(self.audio_buffer)}", "", "**Speaker Segment Counts:**" ] for i in range(status['max_speakers']): color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}") return "\n".join(status_lines) except Exception as e: return f"Error getting status: {e}" # Global instance diarization_system = RealtimeSpeakerDiarization() def initialize_system(): """Initialize the diarization system""" success = diarization_system.initialize_models() if success: return "✅ System initialized successfully! Models loaded." else: return "❌ Failed to initialize system. Please check the logs." def start_recording(): """Start recording and transcription""" return diarization_system.start_recording() def stop_recording(): """Stop recording and transcription""" return diarization_system.stop_recording() def clear_conversation(): """Clear the conversation""" return diarization_system.clear_conversation() def update_settings(threshold, max_speakers): """Update system settings""" return diarization_system.update_settings(threshold, max_speakers) def get_conversation(): """Get the current conversation""" return diarization_system.get_formatted_conversation() def get_status(): """Get system status""" return diarization_system.get_status_info() def process_audio(audio_data): """Process audio from Gradio audio input""" if audio_data is not None: sample_rate, audio_array = audio_data diarization_system.process_audio_stream(audio_array, sample_rate) return get_conversation(), get_status() # Create Gradio interface def create_interface(): with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as app: gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization") gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding using your browser's microphone.") with gr.Row(): with gr.Column(scale=2): # Audio input audio_input = gr.Audio( source="microphone", type="numpy", streaming=True, label="đŸŽ™ī¸ Microphone Input" ) # Main conversation display conversation_output = gr.HTML( value="Click 'Initialize System' to start...", label="Live Conversation" ) # Control buttons with gr.Row(): init_btn = gr.Button("🔧 Initialize System", variant="secondary") start_btn = gr.Button("đŸŽ™ī¸ Start Recording", variant="primary", interactive=False) stop_btn = gr.Button("âšī¸ Stop Recording", variant="stop", interactive=False) clear_btn = gr.Button("đŸ—‘ī¸ Clear Conversation", interactive=False) # Status display status_output = gr.Textbox( label="System Status", value="System not initialized", lines=10, interactive=False ) with gr.Column(scale=1): # Settings panel gr.Markdown("## âš™ī¸ Settings") threshold_slider = gr.Slider( minimum=0.1, maximum=0.95, step=0.05, value=DEFAULT_CHANGE_THRESHOLD, label="Speaker Change Sensitivity", info="Lower values = more sensitive to speaker changes" ) max_speakers_slider = gr.Slider( minimum=2, maximum=ABSOLUTE_MAX_SPEAKERS, step=1, value=DEFAULT_MAX_SPEAKERS, label="Maximum Number of Speakers" ) update_settings_btn = gr.Button("Update Settings") # Speaker color legend gr.Markdown("## 🎨 Speaker Colors") color_info = [] for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)): color_info.append(f'■ Speaker {i+1} ({name})') gr.HTML("
".join(color_info[:DEFAULT_MAX_SPEAKERS])) # Instructions gr.Markdown(""" ## 📋 Instructions 1. **Initialize System** - Load AI models 2. **Allow microphone access** when prompted 3. **Start Recording** - Begin real-time processing 4. **Speak naturally** - The system will detect different speakers 5. **Stop Recording** when done **Note:** Processing happens in real-time with ~2 second chunks for better accuracy. """) # Event handlers def on_initialize(): result = initialize_system() if "successfully" in result: return ( result, gr.update(interactive=True), # start_btn gr.update(interactive=True), # clear_btn get_conversation(), get_status() ) else: return ( result, gr.update(interactive=False), # start_btn gr.update(interactive=False), # clear_btn get_conversation(), get_status() ) def on_start(): result = start_recording() return ( result, gr.update(interactive=False), # start_btn gr.update(interactive=True), # stop_btn ) def on_stop(): result = stop_recording() return ( result, gr.update(interactive=True), # start_btn gr.update(interactive=False), # stop_btn ) # Connect event handlers init_btn.click( on_initialize, outputs=[status_output, start_btn, clear_btn, conversation_output, status_output] ) start_btn.click( on_start, outputs=[status_output, start_btn, stop_btn] ) stop_btn.click( on_stop, outputs=[status_output, start_btn, stop_btn] ) clear_btn.click( clear_conversation, outputs=[status_output] ) update_settings_btn.click( update_settings, inputs=[threshold_slider, max_speakers_slider], outputs=[status_output] ) # Process streaming audio audio_input.stream( process_audio, inputs=[audio_input], outputs=[conversation_output, status_output], time_limit=60, stream_every=0.5 ) # Auto-refresh every 3 seconds refresh_timer = gr.Timer(3.0) refresh_timer.tick( lambda: (get_conversation(), get_status()), outputs=[conversation_output, status_output] ) return app if __name__ == "__main__": app = create_interface() app.launch( server_name="0.0.0.0", server_port=7860, share=True )