Spaces:
Runtime error
Runtime error
import os | |
import json | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms as T | |
from uniformer import uniformer_small | |
from imagenet_class_index import imagenet_classnames | |
import gradio as gr | |
# Device on which to run the model | |
# Set to cuda to load on GPU | |
device = "cpu" | |
os.system("wget https://cdn-lfs.huggingface.co/Andy1621/uniformer/fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775") | |
# Pick a pretrained model | |
model = uniformer_small() | |
state_dict = torch.load('fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775', map_location='cpu') | |
model.load_state_dict(state_dict['model']) | |
# Set to eval mode and move to desired device | |
model = model.to(device) | |
model = model.eval() | |
# Create an id to label name mapping | |
imagenet_id_to_classname = {} | |
for k, v in imagenet_classnames.items(): | |
imagenet_id_to_classname[k] = v[1] | |
os.system("wget https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/13-11-02-olb-by-RalfR-03.jpg/800px-13-11-02-olb-by-RalfR-03.jpg -O library.jpg") | |
def inference(img): | |
image = img | |
image_transform = T.Compose( | |
[ | |
T.Resize(224), | |
T.CenterCrop(224), | |
T.ToTensor(), | |
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
] | |
) | |
image = image_transform(image) | |
# The model expects inputs of shape: B x C x T x H x W | |
image = image.unsqueeze(0) | |
prediction = model(image) | |
prediction = F.softmax(prediction, dim=1) | |
# pred_classes = prediction.topk(k=5).indices | |
# pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]] | |
# pred_class_probs = [prediction[0][i.item()].item() * 100 for i in pred_classes[0]] | |
# res = "Top 5 predicted labels:\n" | |
# for name, prob in zip(pred_class_names, pred_class_probs): | |
# res += f"[{prob:2.2f}%]\t{name}\n" | |
return {imagenet_id_to_classname[str(i)]: float(prediction[0][i]) for i in range(1000)} | |
inputs = gr.inputs.Image(type='pil') | |
# outputs = gr.outputs.Textbox(label="Output") | |
label = gr.outputs.Label(num_top_classes=5) | |
title = "UniFormer-S" | |
description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>" | |
gr.Interface(inference, inputs, outputs=label, title=title, description=description, article=article, examples=[['library.jpg']]).launch(enable_queue=True,cache_examples=True) | |