Andy1621's picture
Update app.py
c9409e6
raw
history blame
2.57 kB
import os
import json
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from uniformer import uniformer_small
import gradio as gr
# Device on which to run the model
# Set to cuda to load on GPU
device = "cpu"
os.system("wget https://cdn-lfs.huggingface.co/Andy1621/uniformer/fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775")
# Pick a pretrained model
model = uniformer_small()
state_dict = torch.load('fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775', map_location='cpu')
model.load_state_dict(state_dict['model'])
# Set to eval mode and move to desired device
model = model.to(device)
model = model.eval()
os.system("wget https://huggingface.co/Andy1621/uniformer/blob/main/imagenet_class_index.json")
with open("imagenet_class_index.json", "r") as f:
imagenet_classnames = json.load(f)
# Create an id to label name mapping
imagenet_id_to_classname = {}
for k, v in imagenet_classnames.items():
imagenet_id_to_classname[k] = v[1]
os.system("wget https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/13-11-02-olb-by-RalfR-03.jpg/800px-13-11-02-olb-by-RalfR-03.jpg -O library.jpg")
def inference(img):
image = img
image_transform = T.Compose(
[
T.Resize(224),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
image = image_transform(image)
# The model expects inputs of shape: B x C x T x H x W
image = image[None, :, None, ...]
prediction = model(image)
prediction = F.softmax(prediction, dim=1)
pred_classes = prediction.topk(k=5).indices
pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
pred_class_probs = []
return "Top 5 predicted labels: %s" % ", ".join(pred_class_names)
inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Textbox(label="Output")
title = "UniFormer-S"
description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>"
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['library.jpg']]).launch(enable_queue=True,cache_examples=True)