import os import json import torch import torch.nn.functional as F import torchvision.transforms as T from uniformer import uniformer_small from imagenet_class_index import imagenet_classnames import gradio as gr # Device on which to run the model # Set to cuda to load on GPU device = "cpu" os.system("wget https://cdn-lfs.huggingface.co/Andy1621/uniformer/fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775") # Pick a pretrained model model = uniformer_small() state_dict = torch.load('fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775', map_location='cpu') model.load_state_dict(state_dict['model']) # Set to eval mode and move to desired device model = model.to(device) model = model.eval() # Create an id to label name mapping imagenet_id_to_classname = {} for k, v in imagenet_classnames.items(): imagenet_id_to_classname[k] = v[1] os.system("wget https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/13-11-02-olb-by-RalfR-03.jpg/800px-13-11-02-olb-by-RalfR-03.jpg -O library.jpg") def inference(img): image = img image_transform = T.Compose( [ T.Resize(224), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) image = image_transform(image) # The model expects inputs of shape: B x C x T x H x W image = image.unsqueeze(0) prediction = model(image) prediction = F.softmax(prediction, dim=1) pred_classes = prediction.topk(k=5).indices pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]] pred_class_probs = [] return "Top 5 predicted labels: %s" % ", ".join(pred_class_names) inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Textbox(label="Output") title = "UniFormer-S" description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

UniFormer: Unifying Convolution and Self-attention for Visual Recognition | Github Repo

" gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['library.jpg']]).launch(enable_queue=True,cache_examples=True)