Spaces:
Sleeping
Sleeping
Delete transform.py
Browse files- transform.py +0 -443
transform.py
DELETED
@@ -1,443 +0,0 @@
|
|
1 |
-
import torchvision
|
2 |
-
import random
|
3 |
-
from PIL import Image, ImageOps
|
4 |
-
import numpy as np
|
5 |
-
import numbers
|
6 |
-
import math
|
7 |
-
import torch
|
8 |
-
|
9 |
-
|
10 |
-
class GroupRandomCrop(object):
|
11 |
-
def __init__(self, size):
|
12 |
-
if isinstance(size, numbers.Number):
|
13 |
-
self.size = (int(size), int(size))
|
14 |
-
else:
|
15 |
-
self.size = size
|
16 |
-
|
17 |
-
def __call__(self, img_group):
|
18 |
-
|
19 |
-
w, h = img_group[0].size
|
20 |
-
th, tw = self.size
|
21 |
-
|
22 |
-
out_images = list()
|
23 |
-
|
24 |
-
x1 = random.randint(0, w - tw)
|
25 |
-
y1 = random.randint(0, h - th)
|
26 |
-
|
27 |
-
for img in img_group:
|
28 |
-
assert(img.size[0] == w and img.size[1] == h)
|
29 |
-
if w == tw and h == th:
|
30 |
-
out_images.append(img)
|
31 |
-
else:
|
32 |
-
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
33 |
-
|
34 |
-
return out_images
|
35 |
-
|
36 |
-
|
37 |
-
class MultiGroupRandomCrop(object):
|
38 |
-
def __init__(self, size, groups=1):
|
39 |
-
if isinstance(size, numbers.Number):
|
40 |
-
self.size = (int(size), int(size))
|
41 |
-
else:
|
42 |
-
self.size = size
|
43 |
-
self.groups = groups
|
44 |
-
|
45 |
-
def __call__(self, img_group):
|
46 |
-
|
47 |
-
w, h = img_group[0].size
|
48 |
-
th, tw = self.size
|
49 |
-
|
50 |
-
out_images = list()
|
51 |
-
|
52 |
-
for i in range(self.groups):
|
53 |
-
x1 = random.randint(0, w - tw)
|
54 |
-
y1 = random.randint(0, h - th)
|
55 |
-
|
56 |
-
for img in img_group:
|
57 |
-
assert(img.size[0] == w and img.size[1] == h)
|
58 |
-
if w == tw and h == th:
|
59 |
-
out_images.append(img)
|
60 |
-
else:
|
61 |
-
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
62 |
-
|
63 |
-
return out_images
|
64 |
-
|
65 |
-
|
66 |
-
class GroupCenterCrop(object):
|
67 |
-
def __init__(self, size):
|
68 |
-
self.worker = torchvision.transforms.CenterCrop(size)
|
69 |
-
|
70 |
-
def __call__(self, img_group):
|
71 |
-
return [self.worker(img) for img in img_group]
|
72 |
-
|
73 |
-
|
74 |
-
class GroupRandomHorizontalFlip(object):
|
75 |
-
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
|
76 |
-
"""
|
77 |
-
|
78 |
-
def __init__(self, is_flow=False):
|
79 |
-
self.is_flow = is_flow
|
80 |
-
|
81 |
-
def __call__(self, img_group, is_flow=False):
|
82 |
-
v = random.random()
|
83 |
-
if v < 0.5:
|
84 |
-
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
|
85 |
-
if self.is_flow:
|
86 |
-
for i in range(0, len(ret), 2):
|
87 |
-
# invert flow pixel values when flipping
|
88 |
-
ret[i] = ImageOps.invert(ret[i])
|
89 |
-
return ret
|
90 |
-
else:
|
91 |
-
return img_group
|
92 |
-
|
93 |
-
|
94 |
-
class GroupNormalize(object):
|
95 |
-
def __init__(self, mean, std):
|
96 |
-
self.mean = mean
|
97 |
-
self.std = std
|
98 |
-
|
99 |
-
def __call__(self, tensor):
|
100 |
-
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
|
101 |
-
rep_std = self.std * (tensor.size()[0] // len(self.std))
|
102 |
-
|
103 |
-
# TODO: make efficient
|
104 |
-
for t, m, s in zip(tensor, rep_mean, rep_std):
|
105 |
-
t.sub_(m).div_(s)
|
106 |
-
|
107 |
-
return tensor
|
108 |
-
|
109 |
-
|
110 |
-
class GroupScale(object):
|
111 |
-
""" Rescales the input PIL.Image to the given 'size'.
|
112 |
-
'size' will be the size of the smaller edge.
|
113 |
-
For example, if height > width, then image will be
|
114 |
-
rescaled to (size * height / width, size)
|
115 |
-
size: size of the smaller edge
|
116 |
-
interpolation: Default: PIL.Image.BILINEAR
|
117 |
-
"""
|
118 |
-
|
119 |
-
def __init__(self, size, interpolation=Image.BILINEAR):
|
120 |
-
self.worker = torchvision.transforms.Resize(size, interpolation)
|
121 |
-
|
122 |
-
def __call__(self, img_group):
|
123 |
-
return [self.worker(img) for img in img_group]
|
124 |
-
|
125 |
-
|
126 |
-
class GroupOverSample(object):
|
127 |
-
def __init__(self, crop_size, scale_size=None, flip=True):
|
128 |
-
self.crop_size = crop_size if not isinstance(
|
129 |
-
crop_size, int) else (crop_size, crop_size)
|
130 |
-
|
131 |
-
if scale_size is not None:
|
132 |
-
self.scale_worker = GroupScale(scale_size)
|
133 |
-
else:
|
134 |
-
self.scale_worker = None
|
135 |
-
self.flip = flip
|
136 |
-
|
137 |
-
def __call__(self, img_group):
|
138 |
-
|
139 |
-
if self.scale_worker is not None:
|
140 |
-
img_group = self.scale_worker(img_group)
|
141 |
-
|
142 |
-
image_w, image_h = img_group[0].size
|
143 |
-
crop_w, crop_h = self.crop_size
|
144 |
-
|
145 |
-
offsets = GroupMultiScaleCrop.fill_fix_offset(
|
146 |
-
False, image_w, image_h, crop_w, crop_h)
|
147 |
-
oversample_group = list()
|
148 |
-
for o_w, o_h in offsets:
|
149 |
-
normal_group = list()
|
150 |
-
flip_group = list()
|
151 |
-
for i, img in enumerate(img_group):
|
152 |
-
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
153 |
-
normal_group.append(crop)
|
154 |
-
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
155 |
-
|
156 |
-
if img.mode == 'L' and i % 2 == 0:
|
157 |
-
flip_group.append(ImageOps.invert(flip_crop))
|
158 |
-
else:
|
159 |
-
flip_group.append(flip_crop)
|
160 |
-
|
161 |
-
oversample_group.extend(normal_group)
|
162 |
-
if self.flip:
|
163 |
-
oversample_group.extend(flip_group)
|
164 |
-
return oversample_group
|
165 |
-
|
166 |
-
|
167 |
-
class GroupFullResSample(object):
|
168 |
-
def __init__(self, crop_size, scale_size=None, flip=True):
|
169 |
-
self.crop_size = crop_size if not isinstance(
|
170 |
-
crop_size, int) else (crop_size, crop_size)
|
171 |
-
|
172 |
-
if scale_size is not None:
|
173 |
-
self.scale_worker = GroupScale(scale_size)
|
174 |
-
else:
|
175 |
-
self.scale_worker = None
|
176 |
-
self.flip = flip
|
177 |
-
|
178 |
-
def __call__(self, img_group):
|
179 |
-
|
180 |
-
if self.scale_worker is not None:
|
181 |
-
img_group = self.scale_worker(img_group)
|
182 |
-
|
183 |
-
image_w, image_h = img_group[0].size
|
184 |
-
crop_w, crop_h = self.crop_size
|
185 |
-
|
186 |
-
w_step = (image_w - crop_w) // 4
|
187 |
-
h_step = (image_h - crop_h) // 4
|
188 |
-
|
189 |
-
offsets = list()
|
190 |
-
offsets.append((0 * w_step, 2 * h_step)) # left
|
191 |
-
offsets.append((4 * w_step, 2 * h_step)) # right
|
192 |
-
offsets.append((2 * w_step, 2 * h_step)) # center
|
193 |
-
|
194 |
-
oversample_group = list()
|
195 |
-
for o_w, o_h in offsets:
|
196 |
-
normal_group = list()
|
197 |
-
flip_group = list()
|
198 |
-
for i, img in enumerate(img_group):
|
199 |
-
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
200 |
-
normal_group.append(crop)
|
201 |
-
if self.flip:
|
202 |
-
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
203 |
-
|
204 |
-
if img.mode == 'L' and i % 2 == 0:
|
205 |
-
flip_group.append(ImageOps.invert(flip_crop))
|
206 |
-
else:
|
207 |
-
flip_group.append(flip_crop)
|
208 |
-
|
209 |
-
oversample_group.extend(normal_group)
|
210 |
-
oversample_group.extend(flip_group)
|
211 |
-
return oversample_group
|
212 |
-
|
213 |
-
|
214 |
-
class GroupMultiScaleCrop(object):
|
215 |
-
|
216 |
-
def __init__(self, input_size, scales=None, max_distort=1,
|
217 |
-
fix_crop=True, more_fix_crop=True):
|
218 |
-
self.scales = scales if scales is not None else [1, .875, .75, .66]
|
219 |
-
self.max_distort = max_distort
|
220 |
-
self.fix_crop = fix_crop
|
221 |
-
self.more_fix_crop = more_fix_crop
|
222 |
-
self.input_size = input_size if not isinstance(input_size, int) else [
|
223 |
-
input_size, input_size]
|
224 |
-
self.interpolation = Image.BILINEAR
|
225 |
-
|
226 |
-
def __call__(self, img_group):
|
227 |
-
|
228 |
-
im_size = img_group[0].size
|
229 |
-
|
230 |
-
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
|
231 |
-
crop_img_group = [
|
232 |
-
img.crop(
|
233 |
-
(offset_w,
|
234 |
-
offset_h,
|
235 |
-
offset_w +
|
236 |
-
crop_w,
|
237 |
-
offset_h +
|
238 |
-
crop_h)) for img in img_group]
|
239 |
-
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
|
240 |
-
for img in crop_img_group]
|
241 |
-
return ret_img_group
|
242 |
-
|
243 |
-
def _sample_crop_size(self, im_size):
|
244 |
-
image_w, image_h = im_size[0], im_size[1]
|
245 |
-
|
246 |
-
# find a crop size
|
247 |
-
base_size = min(image_w, image_h)
|
248 |
-
crop_sizes = [int(base_size * x) for x in self.scales]
|
249 |
-
crop_h = [
|
250 |
-
self.input_size[1] if abs(
|
251 |
-
x - self.input_size[1]) < 3 else x for x in crop_sizes]
|
252 |
-
crop_w = [
|
253 |
-
self.input_size[0] if abs(
|
254 |
-
x - self.input_size[0]) < 3 else x for x in crop_sizes]
|
255 |
-
|
256 |
-
pairs = []
|
257 |
-
for i, h in enumerate(crop_h):
|
258 |
-
for j, w in enumerate(crop_w):
|
259 |
-
if abs(i - j) <= self.max_distort:
|
260 |
-
pairs.append((w, h))
|
261 |
-
|
262 |
-
crop_pair = random.choice(pairs)
|
263 |
-
if not self.fix_crop:
|
264 |
-
w_offset = random.randint(0, image_w - crop_pair[0])
|
265 |
-
h_offset = random.randint(0, image_h - crop_pair[1])
|
266 |
-
else:
|
267 |
-
w_offset, h_offset = self._sample_fix_offset(
|
268 |
-
image_w, image_h, crop_pair[0], crop_pair[1])
|
269 |
-
|
270 |
-
return crop_pair[0], crop_pair[1], w_offset, h_offset
|
271 |
-
|
272 |
-
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
|
273 |
-
offsets = self.fill_fix_offset(
|
274 |
-
self.more_fix_crop, image_w, image_h, crop_w, crop_h)
|
275 |
-
return random.choice(offsets)
|
276 |
-
|
277 |
-
@staticmethod
|
278 |
-
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
|
279 |
-
w_step = (image_w - crop_w) // 4
|
280 |
-
h_step = (image_h - crop_h) // 4
|
281 |
-
|
282 |
-
ret = list()
|
283 |
-
ret.append((0, 0)) # upper left
|
284 |
-
ret.append((4 * w_step, 0)) # upper right
|
285 |
-
ret.append((0, 4 * h_step)) # lower left
|
286 |
-
ret.append((4 * w_step, 4 * h_step)) # lower right
|
287 |
-
ret.append((2 * w_step, 2 * h_step)) # center
|
288 |
-
|
289 |
-
if more_fix_crop:
|
290 |
-
ret.append((0, 2 * h_step)) # center left
|
291 |
-
ret.append((4 * w_step, 2 * h_step)) # center right
|
292 |
-
ret.append((2 * w_step, 4 * h_step)) # lower center
|
293 |
-
ret.append((2 * w_step, 0 * h_step)) # upper center
|
294 |
-
|
295 |
-
ret.append((1 * w_step, 1 * h_step)) # upper left quarter
|
296 |
-
ret.append((3 * w_step, 1 * h_step)) # upper right quarter
|
297 |
-
ret.append((1 * w_step, 3 * h_step)) # lower left quarter
|
298 |
-
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter
|
299 |
-
|
300 |
-
return ret
|
301 |
-
|
302 |
-
|
303 |
-
class GroupRandomSizedCrop(object):
|
304 |
-
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
|
305 |
-
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
|
306 |
-
This is popularly used to train the Inception networks
|
307 |
-
size: size of the smaller edge
|
308 |
-
interpolation: Default: PIL.Image.BILINEAR
|
309 |
-
"""
|
310 |
-
|
311 |
-
def __init__(self, size, interpolation=Image.BILINEAR):
|
312 |
-
self.size = size
|
313 |
-
self.interpolation = interpolation
|
314 |
-
|
315 |
-
def __call__(self, img_group):
|
316 |
-
for attempt in range(10):
|
317 |
-
area = img_group[0].size[0] * img_group[0].size[1]
|
318 |
-
target_area = random.uniform(0.08, 1.0) * area
|
319 |
-
aspect_ratio = random.uniform(3. / 4, 4. / 3)
|
320 |
-
|
321 |
-
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
322 |
-
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
323 |
-
|
324 |
-
if random.random() < 0.5:
|
325 |
-
w, h = h, w
|
326 |
-
|
327 |
-
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
|
328 |
-
x1 = random.randint(0, img_group[0].size[0] - w)
|
329 |
-
y1 = random.randint(0, img_group[0].size[1] - h)
|
330 |
-
found = True
|
331 |
-
break
|
332 |
-
else:
|
333 |
-
found = False
|
334 |
-
x1 = 0
|
335 |
-
y1 = 0
|
336 |
-
|
337 |
-
if found:
|
338 |
-
out_group = list()
|
339 |
-
for img in img_group:
|
340 |
-
img = img.crop((x1, y1, x1 + w, y1 + h))
|
341 |
-
assert(img.size == (w, h))
|
342 |
-
out_group.append(
|
343 |
-
img.resize(
|
344 |
-
(self.size, self.size), self.interpolation))
|
345 |
-
return out_group
|
346 |
-
else:
|
347 |
-
# Fallback
|
348 |
-
scale = GroupScale(self.size, interpolation=self.interpolation)
|
349 |
-
crop = GroupRandomCrop(self.size)
|
350 |
-
return crop(scale(img_group))
|
351 |
-
|
352 |
-
|
353 |
-
class ConvertDataFormat(object):
|
354 |
-
def __init__(self, model_type):
|
355 |
-
self.model_type = model_type
|
356 |
-
|
357 |
-
def __call__(self, images):
|
358 |
-
if self.model_type == '2D':
|
359 |
-
return images
|
360 |
-
tc, h, w = images.size()
|
361 |
-
t = tc // 3
|
362 |
-
images = images.view(t, 3, h, w)
|
363 |
-
images = images.permute(1, 0, 2, 3)
|
364 |
-
return images
|
365 |
-
|
366 |
-
|
367 |
-
class Stack(object):
|
368 |
-
|
369 |
-
def __init__(self, roll=False):
|
370 |
-
self.roll = roll
|
371 |
-
|
372 |
-
def __call__(self, img_group):
|
373 |
-
if img_group[0].mode == 'L':
|
374 |
-
return np.concatenate([np.expand_dims(x, 2)
|
375 |
-
for x in img_group], axis=2)
|
376 |
-
elif img_group[0].mode == 'RGB':
|
377 |
-
if self.roll:
|
378 |
-
return np.concatenate([np.array(x)[:, :, ::-1]
|
379 |
-
for x in img_group], axis=2)
|
380 |
-
else:
|
381 |
-
#print(np.concatenate(img_group, axis=2).shape)
|
382 |
-
# print(img_group[0].shape)
|
383 |
-
return np.concatenate(img_group, axis=2)
|
384 |
-
|
385 |
-
|
386 |
-
class ToTorchFormatTensor(object):
|
387 |
-
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
|
388 |
-
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
|
389 |
-
|
390 |
-
def __init__(self, div=True):
|
391 |
-
self.div = div
|
392 |
-
|
393 |
-
def __call__(self, pic):
|
394 |
-
if isinstance(pic, np.ndarray):
|
395 |
-
# handle numpy array
|
396 |
-
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
|
397 |
-
else:
|
398 |
-
# handle PIL Image
|
399 |
-
img = torch.ByteTensor(
|
400 |
-
torch.ByteStorage.from_buffer(
|
401 |
-
pic.tobytes()))
|
402 |
-
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
|
403 |
-
# put it from HWC to CHW format
|
404 |
-
# yikes, this transpose takes 80% of the loading time/CPU
|
405 |
-
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
406 |
-
return img.float().div(255) if self.div else img.float()
|
407 |
-
|
408 |
-
|
409 |
-
class IdentityTransform(object):
|
410 |
-
|
411 |
-
def __call__(self, data):
|
412 |
-
return data
|
413 |
-
|
414 |
-
|
415 |
-
if __name__ == "__main__":
|
416 |
-
trans = torchvision.transforms.Compose([
|
417 |
-
GroupScale(256),
|
418 |
-
GroupRandomCrop(224),
|
419 |
-
Stack(),
|
420 |
-
ToTorchFormatTensor(),
|
421 |
-
GroupNormalize(
|
422 |
-
mean=[.485, .456, .406],
|
423 |
-
std=[.229, .224, .225]
|
424 |
-
)]
|
425 |
-
)
|
426 |
-
|
427 |
-
im = Image.open('../tensorflow-model-zoo.torch/lena_299.png')
|
428 |
-
|
429 |
-
color_group = [im] * 3
|
430 |
-
rst = trans(color_group)
|
431 |
-
|
432 |
-
gray_group = [im.convert('L')] * 9
|
433 |
-
gray_rst = trans(gray_group)
|
434 |
-
|
435 |
-
trans2 = torchvision.transforms.Compose([
|
436 |
-
GroupRandomSizedCrop(256),
|
437 |
-
Stack(),
|
438 |
-
ToTorchFormatTensor(),
|
439 |
-
GroupNormalize(
|
440 |
-
mean=[.485, .456, .406],
|
441 |
-
std=[.229, .224, .225])
|
442 |
-
])
|
443 |
-
print(trans2(color_group))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|