Spaces:
Runtime error
Runtime error
init
Browse files- README.md +6 -6
- app.py +130 -0
- hitting_baseball.mp4 +0 -0
- hoverboarding.mp4 +0 -0
- kinetics_class_index.py +402 -0
- requirements.txt +6 -0
- transforms.py +443 -0
- uniformerv2.py +510 -0
- yoga.mp4 +0 -0
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces
|
|
|
1 |
---
|
2 |
+
title: Uniformerv2_demo
|
3 |
+
emoji: 📹
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.3
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torchvision.transforms as T
|
7 |
+
from PIL import Image
|
8 |
+
from decord import VideoReader
|
9 |
+
from decord import cpu
|
10 |
+
from uniformerv2 import uniformerv2_b16
|
11 |
+
from kinetics_class_index import kinetics_classnames
|
12 |
+
from transforms import (
|
13 |
+
GroupNormalize, GroupScale, GroupCenterCrop,
|
14 |
+
Stack, ToTorchFormatTensor
|
15 |
+
)
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
|
20 |
+
class Uniformerv2(nn.Module):
|
21 |
+
def __init__(self, model):
|
22 |
+
super().__init__()
|
23 |
+
self.backbone = model
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
return self.backbone(x)
|
27 |
+
|
28 |
+
# Device on which to run the model
|
29 |
+
# Set to cuda to load on GPU
|
30 |
+
device = "cpu"
|
31 |
+
model_path = hf_hub_download(repo_id="Andy1621/uniformerv2", filename="k400+k710_uniformerv2_b16_8x224.pyth")
|
32 |
+
# Pick a pretrained model
|
33 |
+
model = Uniformerv2(uniformerv2_b16(pretrained=False, t_size=8, no_lmhra=True, temporal_downsample=False))
|
34 |
+
state_dict = torch.load(model_path, map_location='cpu')
|
35 |
+
model.load_state_dict(state_dict)
|
36 |
+
|
37 |
+
# Set to eval mode and move to desired device
|
38 |
+
model = model.to(device)
|
39 |
+
model = model.eval()
|
40 |
+
|
41 |
+
# Create an id to label name mapping
|
42 |
+
kinetics_id_to_classname = {}
|
43 |
+
for k, v in kinetics_classnames.items():
|
44 |
+
kinetics_id_to_classname[k] = v
|
45 |
+
|
46 |
+
|
47 |
+
def get_index(num_frames, num_segments=8):
|
48 |
+
seg_size = float(num_frames - 1) / num_segments
|
49 |
+
start = int(seg_size / 2)
|
50 |
+
offsets = np.array([
|
51 |
+
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
52 |
+
])
|
53 |
+
return offsets
|
54 |
+
|
55 |
+
|
56 |
+
def load_video(video_path):
|
57 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
58 |
+
num_frames = len(vr)
|
59 |
+
frame_indices = get_index(num_frames, 8)
|
60 |
+
|
61 |
+
# transform
|
62 |
+
crop_size = 224
|
63 |
+
scale_size = 256
|
64 |
+
input_mean = [0.485, 0.456, 0.406]
|
65 |
+
input_std = [0.229, 0.224, 0.225]
|
66 |
+
|
67 |
+
transform = T.Compose([
|
68 |
+
GroupScale(int(scale_size)),
|
69 |
+
GroupCenterCrop(crop_size),
|
70 |
+
Stack(),
|
71 |
+
ToTorchFormatTensor(),
|
72 |
+
GroupNormalize(input_mean, input_std)
|
73 |
+
])
|
74 |
+
|
75 |
+
images_group = list()
|
76 |
+
for frame_index in frame_indices:
|
77 |
+
img = Image.fromarray(vr[frame_index].asnumpy())
|
78 |
+
images_group.append(img)
|
79 |
+
torch_imgs = transform(images_group)
|
80 |
+
return torch_imgs
|
81 |
+
|
82 |
+
|
83 |
+
def inference(video):
|
84 |
+
vid = load_video(video)
|
85 |
+
|
86 |
+
# The model expects inputs of shape: B x C x H x W
|
87 |
+
TC, H, W = vid.shape
|
88 |
+
inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)
|
89 |
+
|
90 |
+
prediction = model(inputs)
|
91 |
+
prediction = F.softmax(prediction, dim=1).flatten()
|
92 |
+
|
93 |
+
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
|
94 |
+
|
95 |
+
|
96 |
+
def set_example_video(example: list) -> dict:
|
97 |
+
return gr.Video.update(value=example[0])
|
98 |
+
|
99 |
+
|
100 |
+
demo = gr.Blocks()
|
101 |
+
with demo:
|
102 |
+
gr.Markdown(
|
103 |
+
"""
|
104 |
+
# UniFormerV2-B
|
105 |
+
Gradio demo for <a href='https://github.com/OpenGVLab/UniFormerV2' target='_blank'>UniFormerV2</a>: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below.
|
106 |
+
"""
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Box():
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
with gr.Row():
|
113 |
+
input_video = gr.Video(label='Input Video')
|
114 |
+
with gr.Row():
|
115 |
+
submit_button = gr.Button('Submit')
|
116 |
+
with gr.Column():
|
117 |
+
label = gr.Label(num_top_classes=5)
|
118 |
+
with gr.Row():
|
119 |
+
example_videos = gr.Dataset(components=[input_video], samples=[['hitting_baseball.mp4'], ['hoverboarding.mp4'], ['yoga.mp4']])
|
120 |
+
|
121 |
+
gr.Markdown(
|
122 |
+
"""
|
123 |
+
<p style='text-align: center'><a href='https://arxiv.org/abs/2211.09552' target='_blank'>[Arxiv] UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer</a> | <a href='https://github.com/OpenGVLab/UniFormerV2' target='_blank'>Github Repo</a></p>
|
124 |
+
"""
|
125 |
+
)
|
126 |
+
|
127 |
+
submit_button.click(fn=inference, inputs=input_video, outputs=label)
|
128 |
+
example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos.components)
|
129 |
+
|
130 |
+
demo.launch(enable_queue=True)
|
hitting_baseball.mp4
ADDED
Binary file (687 kB). View file
|
|
hoverboarding.mp4
ADDED
Binary file (464 kB). View file
|
|
kinetics_class_index.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
kinetics_classnames = {
|
2 |
+
"0": "riding a bike",
|
3 |
+
"1": "marching",
|
4 |
+
"2": "dodgeball",
|
5 |
+
"3": "playing cymbals",
|
6 |
+
"4": "checking tires",
|
7 |
+
"5": "roller skating",
|
8 |
+
"6": "tasting beer",
|
9 |
+
"7": "clapping",
|
10 |
+
"8": "drawing",
|
11 |
+
"9": "juggling fire",
|
12 |
+
"10": "bobsledding",
|
13 |
+
"11": "petting animal (not cat)",
|
14 |
+
"12": "spray painting",
|
15 |
+
"13": "training dog",
|
16 |
+
"14": "eating watermelon",
|
17 |
+
"15": "building cabinet",
|
18 |
+
"16": "applauding",
|
19 |
+
"17": "playing harp",
|
20 |
+
"18": "balloon blowing",
|
21 |
+
"19": "sled dog racing",
|
22 |
+
"20": "wrestling",
|
23 |
+
"21": "pole vault",
|
24 |
+
"22": "hurling (sport)",
|
25 |
+
"23": "riding scooter",
|
26 |
+
"24": "shearing sheep",
|
27 |
+
"25": "sweeping floor",
|
28 |
+
"26": "eating carrots",
|
29 |
+
"27": "skateboarding",
|
30 |
+
"28": "dunking basketball",
|
31 |
+
"29": "disc golfing",
|
32 |
+
"30": "eating spaghetti",
|
33 |
+
"31": "playing flute",
|
34 |
+
"32": "riding mechanical bull",
|
35 |
+
"33": "making sushi",
|
36 |
+
"34": "trapezing",
|
37 |
+
"35": "picking fruit",
|
38 |
+
"36": "stretching leg",
|
39 |
+
"37": "playing ukulele",
|
40 |
+
"38": "tying tie",
|
41 |
+
"39": "skydiving",
|
42 |
+
"40": "playing cello",
|
43 |
+
"41": "jumping into pool",
|
44 |
+
"42": "shooting goal (soccer)",
|
45 |
+
"43": "trimming trees",
|
46 |
+
"44": "bookbinding",
|
47 |
+
"45": "ski jumping",
|
48 |
+
"46": "walking the dog",
|
49 |
+
"47": "riding unicycle",
|
50 |
+
"48": "shaving head",
|
51 |
+
"49": "hopscotch",
|
52 |
+
"50": "playing piano",
|
53 |
+
"51": "parasailing",
|
54 |
+
"52": "bartending",
|
55 |
+
"53": "kicking field goal",
|
56 |
+
"54": "finger snapping",
|
57 |
+
"55": "dining",
|
58 |
+
"56": "yawning",
|
59 |
+
"57": "peeling potatoes",
|
60 |
+
"58": "canoeing or kayaking",
|
61 |
+
"59": "front raises",
|
62 |
+
"60": "laughing",
|
63 |
+
"61": "dancing macarena",
|
64 |
+
"62": "digging",
|
65 |
+
"63": "reading newspaper",
|
66 |
+
"64": "hitting baseball",
|
67 |
+
"65": "clay pottery making",
|
68 |
+
"66": "exercising with an exercise ball",
|
69 |
+
"67": "playing saxophone",
|
70 |
+
"68": "shooting basketball",
|
71 |
+
"69": "washing hair",
|
72 |
+
"70": "lunge",
|
73 |
+
"71": "brushing hair",
|
74 |
+
"72": "curling hair",
|
75 |
+
"73": "kitesurfing",
|
76 |
+
"74": "tapping guitar",
|
77 |
+
"75": "bending back",
|
78 |
+
"76": "skipping rope",
|
79 |
+
"77": "situp",
|
80 |
+
"78": "folding paper",
|
81 |
+
"79": "cracking neck",
|
82 |
+
"80": "assembling computer",
|
83 |
+
"81": "cleaning gutters",
|
84 |
+
"82": "blowing out candles",
|
85 |
+
"83": "shaking hands",
|
86 |
+
"84": "dancing gangnam style",
|
87 |
+
"85": "windsurfing",
|
88 |
+
"86": "tap dancing",
|
89 |
+
"87": "skiing (not slalom or crosscountry)",
|
90 |
+
"88": "bandaging",
|
91 |
+
"89": "push up",
|
92 |
+
"90": "doing nails",
|
93 |
+
"91": "punching person (boxing)",
|
94 |
+
"92": "bouncing on trampoline",
|
95 |
+
"93": "scrambling eggs",
|
96 |
+
"94": "singing",
|
97 |
+
"95": "cleaning floor",
|
98 |
+
"96": "krumping",
|
99 |
+
"97": "drumming fingers",
|
100 |
+
"98": "snowmobiling",
|
101 |
+
"99": "gymnastics tumbling",
|
102 |
+
"100": "headbanging",
|
103 |
+
"101": "catching or throwing frisbee",
|
104 |
+
"102": "riding elephant",
|
105 |
+
"103": "bee keeping",
|
106 |
+
"104": "feeding birds",
|
107 |
+
"105": "snatch weight lifting",
|
108 |
+
"106": "mowing lawn",
|
109 |
+
"107": "fixing hair",
|
110 |
+
"108": "playing trumpet",
|
111 |
+
"109": "flying kite",
|
112 |
+
"110": "crossing river",
|
113 |
+
"111": "swinging legs",
|
114 |
+
"112": "sanding floor",
|
115 |
+
"113": "belly dancing",
|
116 |
+
"114": "sneezing",
|
117 |
+
"115": "clean and jerk",
|
118 |
+
"116": "side kick",
|
119 |
+
"117": "filling eyebrows",
|
120 |
+
"118": "shuffling cards",
|
121 |
+
"119": "recording music",
|
122 |
+
"120": "cartwheeling",
|
123 |
+
"121": "feeding fish",
|
124 |
+
"122": "folding clothes",
|
125 |
+
"123": "water skiing",
|
126 |
+
"124": "tobogganing",
|
127 |
+
"125": "blowing leaves",
|
128 |
+
"126": "smoking",
|
129 |
+
"127": "unboxing",
|
130 |
+
"128": "tai chi",
|
131 |
+
"129": "waxing legs",
|
132 |
+
"130": "riding camel",
|
133 |
+
"131": "slapping",
|
134 |
+
"132": "tossing salad",
|
135 |
+
"133": "capoeira",
|
136 |
+
"134": "playing cards",
|
137 |
+
"135": "playing organ",
|
138 |
+
"136": "playing violin",
|
139 |
+
"137": "playing drums",
|
140 |
+
"138": "tapping pen",
|
141 |
+
"139": "vault",
|
142 |
+
"140": "shoveling snow",
|
143 |
+
"141": "playing tennis",
|
144 |
+
"142": "getting a tattoo",
|
145 |
+
"143": "making a sandwich",
|
146 |
+
"144": "making tea",
|
147 |
+
"145": "grinding meat",
|
148 |
+
"146": "squat",
|
149 |
+
"147": "eating doughnuts",
|
150 |
+
"148": "ice fishing",
|
151 |
+
"149": "snowkiting",
|
152 |
+
"150": "kicking soccer ball",
|
153 |
+
"151": "playing controller",
|
154 |
+
"152": "giving or receiving award",
|
155 |
+
"153": "welding",
|
156 |
+
"154": "throwing discus",
|
157 |
+
"155": "throwing axe",
|
158 |
+
"156": "ripping paper",
|
159 |
+
"157": "swimming butterfly stroke",
|
160 |
+
"158": "air drumming",
|
161 |
+
"159": "blowing nose",
|
162 |
+
"160": "hockey stop",
|
163 |
+
"161": "taking a shower",
|
164 |
+
"162": "bench pressing",
|
165 |
+
"163": "planting trees",
|
166 |
+
"164": "pumping fist",
|
167 |
+
"165": "climbing tree",
|
168 |
+
"166": "tickling",
|
169 |
+
"167": "high kick",
|
170 |
+
"168": "waiting in line",
|
171 |
+
"169": "slacklining",
|
172 |
+
"170": "tango dancing",
|
173 |
+
"171": "hurdling",
|
174 |
+
"172": "carrying baby",
|
175 |
+
"173": "celebrating",
|
176 |
+
"174": "sharpening knives",
|
177 |
+
"175": "passing American football (in game)",
|
178 |
+
"176": "headbutting",
|
179 |
+
"177": "playing recorder",
|
180 |
+
"178": "brush painting",
|
181 |
+
"179": "garbage collecting",
|
182 |
+
"180": "robot dancing",
|
183 |
+
"181": "shredding paper",
|
184 |
+
"182": "pumping gas",
|
185 |
+
"183": "rock climbing",
|
186 |
+
"184": "hula hooping",
|
187 |
+
"185": "braiding hair",
|
188 |
+
"186": "opening present",
|
189 |
+
"187": "texting",
|
190 |
+
"188": "decorating the christmas tree",
|
191 |
+
"189": "answering questions",
|
192 |
+
"190": "playing keyboard",
|
193 |
+
"191": "writing",
|
194 |
+
"192": "bungee jumping",
|
195 |
+
"193": "sniffing",
|
196 |
+
"194": "eating burger",
|
197 |
+
"195": "playing accordion",
|
198 |
+
"196": "making pizza",
|
199 |
+
"197": "playing volleyball",
|
200 |
+
"198": "tasting food",
|
201 |
+
"199": "pushing cart",
|
202 |
+
"200": "spinning poi",
|
203 |
+
"201": "cleaning windows",
|
204 |
+
"202": "arm wrestling",
|
205 |
+
"203": "changing oil",
|
206 |
+
"204": "swimming breast stroke",
|
207 |
+
"205": "tossing coin",
|
208 |
+
"206": "deadlifting",
|
209 |
+
"207": "hoverboarding",
|
210 |
+
"208": "cutting watermelon",
|
211 |
+
"209": "cheerleading",
|
212 |
+
"210": "snorkeling",
|
213 |
+
"211": "washing hands",
|
214 |
+
"212": "eating cake",
|
215 |
+
"213": "pull ups",
|
216 |
+
"214": "surfing water",
|
217 |
+
"215": "eating hotdog",
|
218 |
+
"216": "holding snake",
|
219 |
+
"217": "playing harmonica",
|
220 |
+
"218": "ironing",
|
221 |
+
"219": "cutting nails",
|
222 |
+
"220": "golf chipping",
|
223 |
+
"221": "shot put",
|
224 |
+
"222": "hugging",
|
225 |
+
"223": "playing clarinet",
|
226 |
+
"224": "faceplanting",
|
227 |
+
"225": "trimming or shaving beard",
|
228 |
+
"226": "drinking shots",
|
229 |
+
"227": "riding mountain bike",
|
230 |
+
"228": "tying bow tie",
|
231 |
+
"229": "swinging on something",
|
232 |
+
"230": "skiing crosscountry",
|
233 |
+
"231": "unloading truck",
|
234 |
+
"232": "cleaning pool",
|
235 |
+
"233": "jogging",
|
236 |
+
"234": "ice climbing",
|
237 |
+
"235": "mopping floor",
|
238 |
+
"236": "making bed",
|
239 |
+
"237": "diving cliff",
|
240 |
+
"238": "washing dishes",
|
241 |
+
"239": "grooming dog",
|
242 |
+
"240": "weaving basket",
|
243 |
+
"241": "frying vegetables",
|
244 |
+
"242": "stomping grapes",
|
245 |
+
"243": "moving furniture",
|
246 |
+
"244": "cooking sausages",
|
247 |
+
"245": "doing laundry",
|
248 |
+
"246": "dying hair",
|
249 |
+
"247": "knitting",
|
250 |
+
"248": "reading book",
|
251 |
+
"249": "baby waking up",
|
252 |
+
"250": "punching bag",
|
253 |
+
"251": "surfing crowd",
|
254 |
+
"252": "cooking chicken",
|
255 |
+
"253": "pushing car",
|
256 |
+
"254": "springboard diving",
|
257 |
+
"255": "swing dancing",
|
258 |
+
"256": "massaging legs",
|
259 |
+
"257": "beatboxing",
|
260 |
+
"258": "breading or breadcrumbing",
|
261 |
+
"259": "somersaulting",
|
262 |
+
"260": "brushing teeth",
|
263 |
+
"261": "stretching arm",
|
264 |
+
"262": "juggling balls",
|
265 |
+
"263": "massaging person's head",
|
266 |
+
"264": "eating ice cream",
|
267 |
+
"265": "extinguishing fire",
|
268 |
+
"266": "hammer throw",
|
269 |
+
"267": "whistling",
|
270 |
+
"268": "crawling baby",
|
271 |
+
"269": "using remote controller (not gaming)",
|
272 |
+
"270": "playing cricket",
|
273 |
+
"271": "opening bottle",
|
274 |
+
"272": "playing xylophone",
|
275 |
+
"273": "motorcycling",
|
276 |
+
"274": "driving car",
|
277 |
+
"275": "exercising arm",
|
278 |
+
"276": "passing American football (not in game)",
|
279 |
+
"277": "playing kickball",
|
280 |
+
"278": "sticking tongue out",
|
281 |
+
"279": "flipping pancake",
|
282 |
+
"280": "catching fish",
|
283 |
+
"281": "eating chips",
|
284 |
+
"282": "shaking head",
|
285 |
+
"283": "sword fighting",
|
286 |
+
"284": "playing poker",
|
287 |
+
"285": "cooking on campfire",
|
288 |
+
"286": "doing aerobics",
|
289 |
+
"287": "paragliding",
|
290 |
+
"288": "using segway",
|
291 |
+
"289": "folding napkins",
|
292 |
+
"290": "playing bagpipes",
|
293 |
+
"291": "gargling",
|
294 |
+
"292": "skiing slalom",
|
295 |
+
"293": "strumming guitar",
|
296 |
+
"294": "javelin throw",
|
297 |
+
"295": "waxing back",
|
298 |
+
"296": "riding or walking with horse",
|
299 |
+
"297": "plastering",
|
300 |
+
"298": "long jump",
|
301 |
+
"299": "parkour",
|
302 |
+
"300": "wrapping present",
|
303 |
+
"301": "egg hunting",
|
304 |
+
"302": "archery",
|
305 |
+
"303": "cleaning toilet",
|
306 |
+
"304": "swimming backstroke",
|
307 |
+
"305": "snowboarding",
|
308 |
+
"306": "catching or throwing baseball",
|
309 |
+
"307": "massaging back",
|
310 |
+
"308": "blowing glass",
|
311 |
+
"309": "playing guitar",
|
312 |
+
"310": "playing chess",
|
313 |
+
"311": "golf driving",
|
314 |
+
"312": "presenting weather forecast",
|
315 |
+
"313": "rock scissors paper",
|
316 |
+
"314": "high jump",
|
317 |
+
"315": "baking cookies",
|
318 |
+
"316": "using computer",
|
319 |
+
"317": "washing feet",
|
320 |
+
"318": "arranging flowers",
|
321 |
+
"319": "playing bass guitar",
|
322 |
+
"320": "spraying",
|
323 |
+
"321": "cutting pineapple",
|
324 |
+
"322": "waxing chest",
|
325 |
+
"323": "auctioning",
|
326 |
+
"324": "jetskiing",
|
327 |
+
"325": "drinking",
|
328 |
+
"326": "busking",
|
329 |
+
"327": "playing monopoly",
|
330 |
+
"328": "salsa dancing",
|
331 |
+
"329": "waxing eyebrows",
|
332 |
+
"330": "watering plants",
|
333 |
+
"331": "zumba",
|
334 |
+
"332": "chopping wood",
|
335 |
+
"333": "pushing wheelchair",
|
336 |
+
"334": "carving pumpkin",
|
337 |
+
"335": "building shed",
|
338 |
+
"336": "making jewelry",
|
339 |
+
"337": "catching or throwing softball",
|
340 |
+
"338": "bending metal",
|
341 |
+
"339": "ice skating",
|
342 |
+
"340": "dancing charleston",
|
343 |
+
"341": "abseiling",
|
344 |
+
"342": "climbing a rope",
|
345 |
+
"343": "crying",
|
346 |
+
"344": "cleaning shoes",
|
347 |
+
"345": "dancing ballet",
|
348 |
+
"346": "driving tractor",
|
349 |
+
"347": "triple jump",
|
350 |
+
"348": "throwing ball",
|
351 |
+
"349": "getting a haircut",
|
352 |
+
"350": "running on treadmill",
|
353 |
+
"351": "climbing ladder",
|
354 |
+
"352": "blasting sand",
|
355 |
+
"353": "playing trombone",
|
356 |
+
"354": "drop kicking",
|
357 |
+
"355": "country line dancing",
|
358 |
+
"356": "changing wheel",
|
359 |
+
"357": "feeding goats",
|
360 |
+
"358": "tying knot (not on a tie)",
|
361 |
+
"359": "setting table",
|
362 |
+
"360": "shaving legs",
|
363 |
+
"361": "kissing",
|
364 |
+
"362": "riding mule",
|
365 |
+
"363": "counting money",
|
366 |
+
"364": "laying bricks",
|
367 |
+
"365": "barbequing",
|
368 |
+
"366": "news anchoring",
|
369 |
+
"367": "smoking hookah",
|
370 |
+
"368": "cooking egg",
|
371 |
+
"369": "peeling apples",
|
372 |
+
"370": "yoga",
|
373 |
+
"371": "sharpening pencil",
|
374 |
+
"372": "dribbling basketball",
|
375 |
+
"373": "petting cat",
|
376 |
+
"374": "playing ice hockey",
|
377 |
+
"375": "milking cow",
|
378 |
+
"376": "shining shoes",
|
379 |
+
"377": "juggling soccer ball",
|
380 |
+
"378": "scuba diving",
|
381 |
+
"379": "playing squash or racquetball",
|
382 |
+
"380": "drinking beer",
|
383 |
+
"381": "sign language interpreting",
|
384 |
+
"382": "playing basketball",
|
385 |
+
"383": "breakdancing",
|
386 |
+
"384": "testifying",
|
387 |
+
"385": "making snowman",
|
388 |
+
"386": "golf putting",
|
389 |
+
"387": "playing didgeridoo",
|
390 |
+
"388": "biking through snow",
|
391 |
+
"389": "sailing",
|
392 |
+
"390": "jumpstyle dancing",
|
393 |
+
"391": "water sliding",
|
394 |
+
"392": "grooming horse",
|
395 |
+
"393": "massaging feet",
|
396 |
+
"394": "playing paintball",
|
397 |
+
"395": "making a cake",
|
398 |
+
"396": "bowling",
|
399 |
+
"397": "contact juggling",
|
400 |
+
"398": "applying cream",
|
401 |
+
"399": "playing badminton"
|
402 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
einops
|
4 |
+
timm
|
5 |
+
Pillow
|
6 |
+
decord
|
transforms.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
import random
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import numpy as np
|
5 |
+
import numbers
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
class GroupRandomCrop(object):
|
11 |
+
def __init__(self, size):
|
12 |
+
if isinstance(size, numbers.Number):
|
13 |
+
self.size = (int(size), int(size))
|
14 |
+
else:
|
15 |
+
self.size = size
|
16 |
+
|
17 |
+
def __call__(self, img_group):
|
18 |
+
|
19 |
+
w, h = img_group[0].size
|
20 |
+
th, tw = self.size
|
21 |
+
|
22 |
+
out_images = list()
|
23 |
+
|
24 |
+
x1 = random.randint(0, w - tw)
|
25 |
+
y1 = random.randint(0, h - th)
|
26 |
+
|
27 |
+
for img in img_group:
|
28 |
+
assert(img.size[0] == w and img.size[1] == h)
|
29 |
+
if w == tw and h == th:
|
30 |
+
out_images.append(img)
|
31 |
+
else:
|
32 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
33 |
+
|
34 |
+
return out_images
|
35 |
+
|
36 |
+
|
37 |
+
class MultiGroupRandomCrop(object):
|
38 |
+
def __init__(self, size, groups=1):
|
39 |
+
if isinstance(size, numbers.Number):
|
40 |
+
self.size = (int(size), int(size))
|
41 |
+
else:
|
42 |
+
self.size = size
|
43 |
+
self.groups = groups
|
44 |
+
|
45 |
+
def __call__(self, img_group):
|
46 |
+
|
47 |
+
w, h = img_group[0].size
|
48 |
+
th, tw = self.size
|
49 |
+
|
50 |
+
out_images = list()
|
51 |
+
|
52 |
+
for i in range(self.groups):
|
53 |
+
x1 = random.randint(0, w - tw)
|
54 |
+
y1 = random.randint(0, h - th)
|
55 |
+
|
56 |
+
for img in img_group:
|
57 |
+
assert(img.size[0] == w and img.size[1] == h)
|
58 |
+
if w == tw and h == th:
|
59 |
+
out_images.append(img)
|
60 |
+
else:
|
61 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
62 |
+
|
63 |
+
return out_images
|
64 |
+
|
65 |
+
|
66 |
+
class GroupCenterCrop(object):
|
67 |
+
def __init__(self, size):
|
68 |
+
self.worker = torchvision.transforms.CenterCrop(size)
|
69 |
+
|
70 |
+
def __call__(self, img_group):
|
71 |
+
return [self.worker(img) for img in img_group]
|
72 |
+
|
73 |
+
|
74 |
+
class GroupRandomHorizontalFlip(object):
|
75 |
+
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, is_flow=False):
|
79 |
+
self.is_flow = is_flow
|
80 |
+
|
81 |
+
def __call__(self, img_group, is_flow=False):
|
82 |
+
v = random.random()
|
83 |
+
if v < 0.5:
|
84 |
+
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
|
85 |
+
if self.is_flow:
|
86 |
+
for i in range(0, len(ret), 2):
|
87 |
+
# invert flow pixel values when flipping
|
88 |
+
ret[i] = ImageOps.invert(ret[i])
|
89 |
+
return ret
|
90 |
+
else:
|
91 |
+
return img_group
|
92 |
+
|
93 |
+
|
94 |
+
class GroupNormalize(object):
|
95 |
+
def __init__(self, mean, std):
|
96 |
+
self.mean = mean
|
97 |
+
self.std = std
|
98 |
+
|
99 |
+
def __call__(self, tensor):
|
100 |
+
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
|
101 |
+
rep_std = self.std * (tensor.size()[0] // len(self.std))
|
102 |
+
|
103 |
+
# TODO: make efficient
|
104 |
+
for t, m, s in zip(tensor, rep_mean, rep_std):
|
105 |
+
t.sub_(m).div_(s)
|
106 |
+
|
107 |
+
return tensor
|
108 |
+
|
109 |
+
|
110 |
+
class GroupScale(object):
|
111 |
+
""" Rescales the input PIL.Image to the given 'size'.
|
112 |
+
'size' will be the size of the smaller edge.
|
113 |
+
For example, if height > width, then image will be
|
114 |
+
rescaled to (size * height / width, size)
|
115 |
+
size: size of the smaller edge
|
116 |
+
interpolation: Default: PIL.Image.BILINEAR
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
120 |
+
self.worker = torchvision.transforms.Resize(size, interpolation)
|
121 |
+
|
122 |
+
def __call__(self, img_group):
|
123 |
+
return [self.worker(img) for img in img_group]
|
124 |
+
|
125 |
+
|
126 |
+
class GroupOverSample(object):
|
127 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
128 |
+
self.crop_size = crop_size if not isinstance(
|
129 |
+
crop_size, int) else (crop_size, crop_size)
|
130 |
+
|
131 |
+
if scale_size is not None:
|
132 |
+
self.scale_worker = GroupScale(scale_size)
|
133 |
+
else:
|
134 |
+
self.scale_worker = None
|
135 |
+
self.flip = flip
|
136 |
+
|
137 |
+
def __call__(self, img_group):
|
138 |
+
|
139 |
+
if self.scale_worker is not None:
|
140 |
+
img_group = self.scale_worker(img_group)
|
141 |
+
|
142 |
+
image_w, image_h = img_group[0].size
|
143 |
+
crop_w, crop_h = self.crop_size
|
144 |
+
|
145 |
+
offsets = GroupMultiScaleCrop.fill_fix_offset(
|
146 |
+
False, image_w, image_h, crop_w, crop_h)
|
147 |
+
oversample_group = list()
|
148 |
+
for o_w, o_h in offsets:
|
149 |
+
normal_group = list()
|
150 |
+
flip_group = list()
|
151 |
+
for i, img in enumerate(img_group):
|
152 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
153 |
+
normal_group.append(crop)
|
154 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
155 |
+
|
156 |
+
if img.mode == 'L' and i % 2 == 0:
|
157 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
158 |
+
else:
|
159 |
+
flip_group.append(flip_crop)
|
160 |
+
|
161 |
+
oversample_group.extend(normal_group)
|
162 |
+
if self.flip:
|
163 |
+
oversample_group.extend(flip_group)
|
164 |
+
return oversample_group
|
165 |
+
|
166 |
+
|
167 |
+
class GroupFullResSample(object):
|
168 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
169 |
+
self.crop_size = crop_size if not isinstance(
|
170 |
+
crop_size, int) else (crop_size, crop_size)
|
171 |
+
|
172 |
+
if scale_size is not None:
|
173 |
+
self.scale_worker = GroupScale(scale_size)
|
174 |
+
else:
|
175 |
+
self.scale_worker = None
|
176 |
+
self.flip = flip
|
177 |
+
|
178 |
+
def __call__(self, img_group):
|
179 |
+
|
180 |
+
if self.scale_worker is not None:
|
181 |
+
img_group = self.scale_worker(img_group)
|
182 |
+
|
183 |
+
image_w, image_h = img_group[0].size
|
184 |
+
crop_w, crop_h = self.crop_size
|
185 |
+
|
186 |
+
w_step = (image_w - crop_w) // 4
|
187 |
+
h_step = (image_h - crop_h) // 4
|
188 |
+
|
189 |
+
offsets = list()
|
190 |
+
offsets.append((0 * w_step, 2 * h_step)) # left
|
191 |
+
offsets.append((4 * w_step, 2 * h_step)) # right
|
192 |
+
offsets.append((2 * w_step, 2 * h_step)) # center
|
193 |
+
|
194 |
+
oversample_group = list()
|
195 |
+
for o_w, o_h in offsets:
|
196 |
+
normal_group = list()
|
197 |
+
flip_group = list()
|
198 |
+
for i, img in enumerate(img_group):
|
199 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
200 |
+
normal_group.append(crop)
|
201 |
+
if self.flip:
|
202 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
203 |
+
|
204 |
+
if img.mode == 'L' and i % 2 == 0:
|
205 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
206 |
+
else:
|
207 |
+
flip_group.append(flip_crop)
|
208 |
+
|
209 |
+
oversample_group.extend(normal_group)
|
210 |
+
oversample_group.extend(flip_group)
|
211 |
+
return oversample_group
|
212 |
+
|
213 |
+
|
214 |
+
class GroupMultiScaleCrop(object):
|
215 |
+
|
216 |
+
def __init__(self, input_size, scales=None, max_distort=1,
|
217 |
+
fix_crop=True, more_fix_crop=True):
|
218 |
+
self.scales = scales if scales is not None else [1, .875, .75, .66]
|
219 |
+
self.max_distort = max_distort
|
220 |
+
self.fix_crop = fix_crop
|
221 |
+
self.more_fix_crop = more_fix_crop
|
222 |
+
self.input_size = input_size if not isinstance(input_size, int) else [
|
223 |
+
input_size, input_size]
|
224 |
+
self.interpolation = Image.BILINEAR
|
225 |
+
|
226 |
+
def __call__(self, img_group):
|
227 |
+
|
228 |
+
im_size = img_group[0].size
|
229 |
+
|
230 |
+
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
|
231 |
+
crop_img_group = [
|
232 |
+
img.crop(
|
233 |
+
(offset_w,
|
234 |
+
offset_h,
|
235 |
+
offset_w +
|
236 |
+
crop_w,
|
237 |
+
offset_h +
|
238 |
+
crop_h)) for img in img_group]
|
239 |
+
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
|
240 |
+
for img in crop_img_group]
|
241 |
+
return ret_img_group
|
242 |
+
|
243 |
+
def _sample_crop_size(self, im_size):
|
244 |
+
image_w, image_h = im_size[0], im_size[1]
|
245 |
+
|
246 |
+
# find a crop size
|
247 |
+
base_size = min(image_w, image_h)
|
248 |
+
crop_sizes = [int(base_size * x) for x in self.scales]
|
249 |
+
crop_h = [
|
250 |
+
self.input_size[1] if abs(
|
251 |
+
x - self.input_size[1]) < 3 else x for x in crop_sizes]
|
252 |
+
crop_w = [
|
253 |
+
self.input_size[0] if abs(
|
254 |
+
x - self.input_size[0]) < 3 else x for x in crop_sizes]
|
255 |
+
|
256 |
+
pairs = []
|
257 |
+
for i, h in enumerate(crop_h):
|
258 |
+
for j, w in enumerate(crop_w):
|
259 |
+
if abs(i - j) <= self.max_distort:
|
260 |
+
pairs.append((w, h))
|
261 |
+
|
262 |
+
crop_pair = random.choice(pairs)
|
263 |
+
if not self.fix_crop:
|
264 |
+
w_offset = random.randint(0, image_w - crop_pair[0])
|
265 |
+
h_offset = random.randint(0, image_h - crop_pair[1])
|
266 |
+
else:
|
267 |
+
w_offset, h_offset = self._sample_fix_offset(
|
268 |
+
image_w, image_h, crop_pair[0], crop_pair[1])
|
269 |
+
|
270 |
+
return crop_pair[0], crop_pair[1], w_offset, h_offset
|
271 |
+
|
272 |
+
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
|
273 |
+
offsets = self.fill_fix_offset(
|
274 |
+
self.more_fix_crop, image_w, image_h, crop_w, crop_h)
|
275 |
+
return random.choice(offsets)
|
276 |
+
|
277 |
+
@staticmethod
|
278 |
+
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
|
279 |
+
w_step = (image_w - crop_w) // 4
|
280 |
+
h_step = (image_h - crop_h) // 4
|
281 |
+
|
282 |
+
ret = list()
|
283 |
+
ret.append((0, 0)) # upper left
|
284 |
+
ret.append((4 * w_step, 0)) # upper right
|
285 |
+
ret.append((0, 4 * h_step)) # lower left
|
286 |
+
ret.append((4 * w_step, 4 * h_step)) # lower right
|
287 |
+
ret.append((2 * w_step, 2 * h_step)) # center
|
288 |
+
|
289 |
+
if more_fix_crop:
|
290 |
+
ret.append((0, 2 * h_step)) # center left
|
291 |
+
ret.append((4 * w_step, 2 * h_step)) # center right
|
292 |
+
ret.append((2 * w_step, 4 * h_step)) # lower center
|
293 |
+
ret.append((2 * w_step, 0 * h_step)) # upper center
|
294 |
+
|
295 |
+
ret.append((1 * w_step, 1 * h_step)) # upper left quarter
|
296 |
+
ret.append((3 * w_step, 1 * h_step)) # upper right quarter
|
297 |
+
ret.append((1 * w_step, 3 * h_step)) # lower left quarter
|
298 |
+
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter
|
299 |
+
|
300 |
+
return ret
|
301 |
+
|
302 |
+
|
303 |
+
class GroupRandomSizedCrop(object):
|
304 |
+
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
|
305 |
+
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
|
306 |
+
This is popularly used to train the Inception networks
|
307 |
+
size: size of the smaller edge
|
308 |
+
interpolation: Default: PIL.Image.BILINEAR
|
309 |
+
"""
|
310 |
+
|
311 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
312 |
+
self.size = size
|
313 |
+
self.interpolation = interpolation
|
314 |
+
|
315 |
+
def __call__(self, img_group):
|
316 |
+
for attempt in range(10):
|
317 |
+
area = img_group[0].size[0] * img_group[0].size[1]
|
318 |
+
target_area = random.uniform(0.08, 1.0) * area
|
319 |
+
aspect_ratio = random.uniform(3. / 4, 4. / 3)
|
320 |
+
|
321 |
+
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
322 |
+
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
323 |
+
|
324 |
+
if random.random() < 0.5:
|
325 |
+
w, h = h, w
|
326 |
+
|
327 |
+
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
|
328 |
+
x1 = random.randint(0, img_group[0].size[0] - w)
|
329 |
+
y1 = random.randint(0, img_group[0].size[1] - h)
|
330 |
+
found = True
|
331 |
+
break
|
332 |
+
else:
|
333 |
+
found = False
|
334 |
+
x1 = 0
|
335 |
+
y1 = 0
|
336 |
+
|
337 |
+
if found:
|
338 |
+
out_group = list()
|
339 |
+
for img in img_group:
|
340 |
+
img = img.crop((x1, y1, x1 + w, y1 + h))
|
341 |
+
assert(img.size == (w, h))
|
342 |
+
out_group.append(
|
343 |
+
img.resize(
|
344 |
+
(self.size, self.size), self.interpolation))
|
345 |
+
return out_group
|
346 |
+
else:
|
347 |
+
# Fallback
|
348 |
+
scale = GroupScale(self.size, interpolation=self.interpolation)
|
349 |
+
crop = GroupRandomCrop(self.size)
|
350 |
+
return crop(scale(img_group))
|
351 |
+
|
352 |
+
|
353 |
+
class ConvertDataFormat(object):
|
354 |
+
def __init__(self, model_type):
|
355 |
+
self.model_type = model_type
|
356 |
+
|
357 |
+
def __call__(self, images):
|
358 |
+
if self.model_type == '2D':
|
359 |
+
return images
|
360 |
+
tc, h, w = images.size()
|
361 |
+
t = tc // 3
|
362 |
+
images = images.view(t, 3, h, w)
|
363 |
+
images = images.permute(1, 0, 2, 3)
|
364 |
+
return images
|
365 |
+
|
366 |
+
|
367 |
+
class Stack(object):
|
368 |
+
|
369 |
+
def __init__(self, roll=False):
|
370 |
+
self.roll = roll
|
371 |
+
|
372 |
+
def __call__(self, img_group):
|
373 |
+
if img_group[0].mode == 'L':
|
374 |
+
return np.concatenate([np.expand_dims(x, 2)
|
375 |
+
for x in img_group], axis=2)
|
376 |
+
elif img_group[0].mode == 'RGB':
|
377 |
+
if self.roll:
|
378 |
+
return np.concatenate([np.array(x)[:, :, ::-1]
|
379 |
+
for x in img_group], axis=2)
|
380 |
+
else:
|
381 |
+
#print(np.concatenate(img_group, axis=2).shape)
|
382 |
+
# print(img_group[0].shape)
|
383 |
+
return np.concatenate(img_group, axis=2)
|
384 |
+
|
385 |
+
|
386 |
+
class ToTorchFormatTensor(object):
|
387 |
+
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
|
388 |
+
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
|
389 |
+
|
390 |
+
def __init__(self, div=True):
|
391 |
+
self.div = div
|
392 |
+
|
393 |
+
def __call__(self, pic):
|
394 |
+
if isinstance(pic, np.ndarray):
|
395 |
+
# handle numpy array
|
396 |
+
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
|
397 |
+
else:
|
398 |
+
# handle PIL Image
|
399 |
+
img = torch.ByteTensor(
|
400 |
+
torch.ByteStorage.from_buffer(
|
401 |
+
pic.tobytes()))
|
402 |
+
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
|
403 |
+
# put it from HWC to CHW format
|
404 |
+
# yikes, this transpose takes 80% of the loading time/CPU
|
405 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
406 |
+
return img.float().div(255) if self.div else img.float()
|
407 |
+
|
408 |
+
|
409 |
+
class IdentityTransform(object):
|
410 |
+
|
411 |
+
def __call__(self, data):
|
412 |
+
return data
|
413 |
+
|
414 |
+
|
415 |
+
if __name__ == "__main__":
|
416 |
+
trans = torchvision.transforms.Compose([
|
417 |
+
GroupScale(256),
|
418 |
+
GroupRandomCrop(224),
|
419 |
+
Stack(),
|
420 |
+
ToTorchFormatTensor(),
|
421 |
+
GroupNormalize(
|
422 |
+
mean=[.485, .456, .406],
|
423 |
+
std=[.229, .224, .225]
|
424 |
+
)]
|
425 |
+
)
|
426 |
+
|
427 |
+
im = Image.open('../tensorflow-model-zoo.torch/lena_299.png')
|
428 |
+
|
429 |
+
color_group = [im] * 3
|
430 |
+
rst = trans(color_group)
|
431 |
+
|
432 |
+
gray_group = [im.convert('L')] * 9
|
433 |
+
gray_rst = trans(gray_group)
|
434 |
+
|
435 |
+
trans2 = torchvision.transforms.Compose([
|
436 |
+
GroupRandomSizedCrop(256),
|
437 |
+
Stack(),
|
438 |
+
ToTorchFormatTensor(),
|
439 |
+
GroupNormalize(
|
440 |
+
mean=[.485, .456, .406],
|
441 |
+
std=[.229, .224, .225])
|
442 |
+
])
|
443 |
+
print(trans2(color_group))
|
uniformerv2.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
import os
|
3 |
+
from collections import OrderedDict
|
4 |
+
|
5 |
+
from timm.models.layers import DropPath
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import MultiheadAttention
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint as checkpoint
|
11 |
+
|
12 |
+
|
13 |
+
MODEL_PATH = './'
|
14 |
+
_MODELS = {
|
15 |
+
"ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"),
|
16 |
+
"ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"),
|
17 |
+
"ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"),
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
class LayerNorm(nn.LayerNorm):
|
22 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
orig_type = x.dtype
|
26 |
+
ret = super().forward(x.type(torch.float32))
|
27 |
+
return ret.type(orig_type)
|
28 |
+
|
29 |
+
|
30 |
+
class QuickGELU(nn.Module):
|
31 |
+
def forward(self, x):
|
32 |
+
return x * torch.sigmoid(1.702 * x)
|
33 |
+
|
34 |
+
|
35 |
+
class Local_MHRA(nn.Module):
|
36 |
+
def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
padding = pos_kernel_size // 2
|
40 |
+
re_d_model = int(d_model // dw_reduction)
|
41 |
+
self.pos_embed = nn.Sequential(
|
42 |
+
nn.BatchNorm3d(d_model),
|
43 |
+
nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0),
|
44 |
+
nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model),
|
45 |
+
nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0),
|
46 |
+
)
|
47 |
+
|
48 |
+
# init zero
|
49 |
+
print('Init zero for Conv in pos_emb')
|
50 |
+
nn.init.constant_(self.pos_embed[3].weight, 0)
|
51 |
+
nn.init.constant_(self.pos_embed[3].bias, 0)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return self.pos_embed(x)
|
55 |
+
|
56 |
+
|
57 |
+
class ResidualAttentionBlock(nn.Module):
|
58 |
+
def __init__(
|
59 |
+
self, d_model, n_head, attn_mask=None, drop_path=0.0,
|
60 |
+
dw_reduction=1.5, no_lmhra=False, double_lmhra=True
|
61 |
+
):
|
62 |
+
super().__init__()
|
63 |
+
|
64 |
+
self.n_head = n_head
|
65 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
66 |
+
print(f'Drop path rate: {drop_path}')
|
67 |
+
|
68 |
+
self.no_lmhra = no_lmhra
|
69 |
+
self.double_lmhra = double_lmhra
|
70 |
+
print(f'No L_MHRA: {no_lmhra}')
|
71 |
+
print(f'Double L_MHRA: {double_lmhra}')
|
72 |
+
if not no_lmhra:
|
73 |
+
self.lmhra1 = Local_MHRA(d_model, dw_reduction=dw_reduction)
|
74 |
+
if double_lmhra:
|
75 |
+
self.lmhra2 = Local_MHRA(d_model, dw_reduction=dw_reduction)
|
76 |
+
|
77 |
+
# spatial
|
78 |
+
self.attn = MultiheadAttention(d_model, n_head)
|
79 |
+
self.ln_1 = LayerNorm(d_model)
|
80 |
+
self.mlp = nn.Sequential(OrderedDict([
|
81 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
82 |
+
("gelu", QuickGELU()),
|
83 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
84 |
+
]))
|
85 |
+
self.ln_2 = LayerNorm(d_model)
|
86 |
+
self.attn_mask = attn_mask
|
87 |
+
|
88 |
+
def attention(self, x):
|
89 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
90 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
91 |
+
|
92 |
+
def forward(self, x, T=8, use_checkpoint=False):
|
93 |
+
# x: 1+HW, NT, C
|
94 |
+
if not self.no_lmhra:
|
95 |
+
# Local MHRA
|
96 |
+
tmp_x = x[1:, :, :]
|
97 |
+
L, NT, C = tmp_x.shape
|
98 |
+
N = NT // T
|
99 |
+
H = W = int(L ** 0.5)
|
100 |
+
tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous()
|
101 |
+
tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x))
|
102 |
+
tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C)
|
103 |
+
x = torch.cat([x[:1, :, :], tmp_x], dim=0)
|
104 |
+
# MHSA
|
105 |
+
if use_checkpoint:
|
106 |
+
attn_out = checkpoint.checkpoint(self.attention, self.ln_1(x))
|
107 |
+
x = x + self.drop_path(attn_out)
|
108 |
+
else:
|
109 |
+
x = x + self.drop_path(self.attention(self.ln_1(x)))
|
110 |
+
# Local MHRA
|
111 |
+
if not self.no_lmhra and self.double_lmhra:
|
112 |
+
tmp_x = x[1:, :, :]
|
113 |
+
tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous()
|
114 |
+
tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x))
|
115 |
+
tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C)
|
116 |
+
x = torch.cat([x[:1, :, :], tmp_x], dim=0)
|
117 |
+
# FFN
|
118 |
+
if use_checkpoint:
|
119 |
+
mlp_out = checkpoint.checkpoint(self.mlp, self.ln_2(x))
|
120 |
+
x = x + self.drop_path(mlp_out)
|
121 |
+
else:
|
122 |
+
x = x + self.drop_path(self.mlp(self.ln_2(x)))
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
class Extractor(nn.Module):
|
127 |
+
def __init__(
|
128 |
+
self, d_model, n_head, attn_mask=None,
|
129 |
+
mlp_factor=4.0, dropout=0.0, drop_path=0.0,
|
130 |
+
):
|
131 |
+
super().__init__()
|
132 |
+
|
133 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
134 |
+
print(f'Drop path rate: {drop_path}')
|
135 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
136 |
+
self.ln_1 = nn.LayerNorm(d_model)
|
137 |
+
d_mlp = round(mlp_factor * d_model)
|
138 |
+
self.mlp = nn.Sequential(OrderedDict([
|
139 |
+
("c_fc", nn.Linear(d_model, d_mlp)),
|
140 |
+
("gelu", QuickGELU()),
|
141 |
+
("dropout", nn.Dropout(dropout)),
|
142 |
+
("c_proj", nn.Linear(d_mlp, d_model))
|
143 |
+
]))
|
144 |
+
self.ln_2 = nn.LayerNorm(d_model)
|
145 |
+
self.ln_3 = nn.LayerNorm(d_model)
|
146 |
+
self.attn_mask = attn_mask
|
147 |
+
|
148 |
+
# zero init
|
149 |
+
nn.init.xavier_uniform_(self.attn.in_proj_weight)
|
150 |
+
nn.init.constant_(self.attn.out_proj.weight, 0.)
|
151 |
+
nn.init.constant_(self.attn.out_proj.bias, 0.)
|
152 |
+
nn.init.xavier_uniform_(self.mlp[0].weight)
|
153 |
+
nn.init.constant_(self.mlp[-1].weight, 0.)
|
154 |
+
nn.init.constant_(self.mlp[-1].bias, 0.)
|
155 |
+
|
156 |
+
def attention(self, x, y):
|
157 |
+
d_model = self.ln_1.weight.size(0)
|
158 |
+
q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model]
|
159 |
+
|
160 |
+
k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model]
|
161 |
+
v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:]
|
162 |
+
Tx, Ty, N = q.size(0), k.size(0), q.size(1)
|
163 |
+
q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
|
164 |
+
k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
|
165 |
+
v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
|
166 |
+
aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5))
|
167 |
+
|
168 |
+
aff = aff.softmax(dim=-1)
|
169 |
+
out = aff @ v
|
170 |
+
out = out.permute(2, 0, 1, 3).flatten(2)
|
171 |
+
out = self.attn.out_proj(out)
|
172 |
+
return out
|
173 |
+
|
174 |
+
def forward(self, x, y):
|
175 |
+
x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y)))
|
176 |
+
x = x + self.drop_path(self.mlp(self.ln_2(x)))
|
177 |
+
return x
|
178 |
+
|
179 |
+
|
180 |
+
class Transformer(nn.Module):
|
181 |
+
def __init__(
|
182 |
+
self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0.,
|
183 |
+
use_checkpoint=False, checkpoint_num=[0], t_size=8, dw_reduction=2,
|
184 |
+
no_lmhra=False, double_lmhra=True,
|
185 |
+
return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
|
186 |
+
n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
|
187 |
+
mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
|
188 |
+
cls_dropout=0.5, num_classes=400,
|
189 |
+
):
|
190 |
+
super().__init__()
|
191 |
+
self.T = t_size
|
192 |
+
self.return_list = return_list
|
193 |
+
# backbone
|
194 |
+
b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)]
|
195 |
+
self.resblocks = nn.ModuleList([
|
196 |
+
ResidualAttentionBlock(
|
197 |
+
width, heads, attn_mask,
|
198 |
+
drop_path=b_dpr[i],
|
199 |
+
dw_reduction=dw_reduction,
|
200 |
+
no_lmhra=no_lmhra,
|
201 |
+
double_lmhra=double_lmhra,
|
202 |
+
) for i in range(layers)
|
203 |
+
])
|
204 |
+
# checkpoint
|
205 |
+
self.use_checkpoint = use_checkpoint
|
206 |
+
self.checkpoint_num = checkpoint_num
|
207 |
+
self.n_layers = n_layers
|
208 |
+
print(f'Use checkpoint: {self.use_checkpoint}')
|
209 |
+
print(f'Checkpoint number: {self.checkpoint_num}')
|
210 |
+
|
211 |
+
# global block
|
212 |
+
assert n_layers == len(return_list)
|
213 |
+
if n_layers > 0:
|
214 |
+
self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim))
|
215 |
+
self.dpe = nn.ModuleList([
|
216 |
+
nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim)
|
217 |
+
for i in range(n_layers)
|
218 |
+
])
|
219 |
+
for m in self.dpe:
|
220 |
+
nn.init.constant_(m.bias, 0.)
|
221 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)]
|
222 |
+
self.dec = nn.ModuleList([
|
223 |
+
Extractor(
|
224 |
+
n_dim, n_head, mlp_factor=mlp_factor,
|
225 |
+
dropout=mlp_dropout[i], drop_path=dpr[i],
|
226 |
+
) for i in range(n_layers)
|
227 |
+
])
|
228 |
+
self.balance = nn.Parameter(torch.zeros((n_dim)))
|
229 |
+
self.sigmoid = nn.Sigmoid()
|
230 |
+
# projection
|
231 |
+
self.proj = nn.Sequential(
|
232 |
+
nn.LayerNorm(n_dim),
|
233 |
+
nn.Dropout(cls_dropout),
|
234 |
+
nn.Linear(n_dim, num_classes),
|
235 |
+
)
|
236 |
+
|
237 |
+
def forward(self, x):
|
238 |
+
T_down = self.T
|
239 |
+
L, NT, C = x.shape
|
240 |
+
N = NT // T_down
|
241 |
+
H = W = int((L - 1) ** 0.5)
|
242 |
+
|
243 |
+
if self.n_layers > 0:
|
244 |
+
cls_token = self.temporal_cls_token.repeat(1, N, 1)
|
245 |
+
|
246 |
+
j = -1
|
247 |
+
for i, resblock in enumerate(self.resblocks):
|
248 |
+
if self.use_checkpoint and i < self.checkpoint_num[0]:
|
249 |
+
x = resblock(x, self.T, use_checkpoint=True)
|
250 |
+
else:
|
251 |
+
x = resblock(x, T_down)
|
252 |
+
if i in self.return_list:
|
253 |
+
j += 1
|
254 |
+
tmp_x = x.clone()
|
255 |
+
tmp_x = tmp_x.view(L, N, T_down, C)
|
256 |
+
# dpe
|
257 |
+
_, tmp_feats = tmp_x[:1], tmp_x[1:]
|
258 |
+
tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W)
|
259 |
+
tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1).contiguous()
|
260 |
+
tmp_x[1:] = tmp_x[1:] + tmp_feats
|
261 |
+
# global block
|
262 |
+
tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C
|
263 |
+
cls_token = self.dec[j](cls_token, tmp_x)
|
264 |
+
|
265 |
+
if self.n_layers > 0:
|
266 |
+
weight = self.sigmoid(self.balance)
|
267 |
+
residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C
|
268 |
+
return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual)
|
269 |
+
else:
|
270 |
+
residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C
|
271 |
+
return self.proj(residual)
|
272 |
+
|
273 |
+
|
274 |
+
class VisionTransformer(nn.Module):
|
275 |
+
def __init__(
|
276 |
+
self,
|
277 |
+
# backbone
|
278 |
+
input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0.,
|
279 |
+
use_checkpoint=False, checkpoint_num=[0], t_size=8, kernel_size=3, dw_reduction=1.5,
|
280 |
+
temporal_downsample=True,
|
281 |
+
no_lmhra=-False, double_lmhra=True,
|
282 |
+
# global block
|
283 |
+
return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
|
284 |
+
n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
|
285 |
+
mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
|
286 |
+
cls_dropout=0.5, num_classes=400,
|
287 |
+
):
|
288 |
+
super().__init__()
|
289 |
+
self.input_resolution = input_resolution
|
290 |
+
self.output_dim = output_dim
|
291 |
+
padding = (kernel_size - 1) // 2
|
292 |
+
if temporal_downsample:
|
293 |
+
self.conv1 = nn.Conv3d(3, width, (kernel_size, patch_size, patch_size), (2, patch_size, patch_size), (padding, 0, 0), bias=False)
|
294 |
+
t_size = t_size // 2
|
295 |
+
else:
|
296 |
+
self.conv1 = nn.Conv3d(3, width, (1, patch_size, patch_size), (1, patch_size, patch_size), (0, 0, 0), bias=False)
|
297 |
+
|
298 |
+
scale = width ** -0.5
|
299 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
300 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
301 |
+
self.ln_pre = LayerNorm(width)
|
302 |
+
|
303 |
+
self.transformer = Transformer(
|
304 |
+
width, layers, heads, dw_reduction=dw_reduction,
|
305 |
+
backbone_drop_path_rate=backbone_drop_path_rate,
|
306 |
+
use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size,
|
307 |
+
no_lmhra=no_lmhra, double_lmhra=double_lmhra,
|
308 |
+
return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head,
|
309 |
+
mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout,
|
310 |
+
cls_dropout=cls_dropout, num_classes=num_classes,
|
311 |
+
)
|
312 |
+
|
313 |
+
def forward(self, x):
|
314 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
315 |
+
N, C, T, H, W = x.shape
|
316 |
+
x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C)
|
317 |
+
|
318 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
319 |
+
x = x + self.positional_embedding.to(x.dtype)
|
320 |
+
x = self.ln_pre(x)
|
321 |
+
|
322 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
323 |
+
out = self.transformer(x)
|
324 |
+
return out
|
325 |
+
|
326 |
+
|
327 |
+
def inflate_weight(weight_2d, time_dim, center=True):
|
328 |
+
print(f'Init center: {center}')
|
329 |
+
if center:
|
330 |
+
weight_3d = torch.zeros(*weight_2d.shape)
|
331 |
+
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
332 |
+
middle_idx = time_dim // 2
|
333 |
+
weight_3d[:, :, middle_idx, :, :] = weight_2d
|
334 |
+
else:
|
335 |
+
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
336 |
+
weight_3d = weight_3d / time_dim
|
337 |
+
return weight_3d
|
338 |
+
|
339 |
+
|
340 |
+
def load_state_dict(model, state_dict):
|
341 |
+
state_dict_3d = model.state_dict()
|
342 |
+
for k in state_dict.keys():
|
343 |
+
if state_dict[k].shape != state_dict_3d[k].shape:
|
344 |
+
if len(state_dict_3d[k].shape) <= 2:
|
345 |
+
print(f'Ignore: {k}')
|
346 |
+
continue
|
347 |
+
print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
|
348 |
+
time_dim = state_dict_3d[k].shape[2]
|
349 |
+
state_dict[k] = inflate_weight(state_dict[k], time_dim)
|
350 |
+
model.load_state_dict(state_dict, strict=False)
|
351 |
+
|
352 |
+
|
353 |
+
def uniformerv2_b16(
|
354 |
+
pretrained=True, use_checkpoint=False, checkpoint_num=[0],
|
355 |
+
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0.,
|
356 |
+
temporal_downsample=True,
|
357 |
+
no_lmhra=False, double_lmhra=True,
|
358 |
+
return_list=[8, 9, 10, 11],
|
359 |
+
n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.,
|
360 |
+
mlp_dropout=[0.5, 0.5, 0.5, 0.5],
|
361 |
+
cls_dropout=0.5, num_classes=400,
|
362 |
+
):
|
363 |
+
model = VisionTransformer(
|
364 |
+
input_resolution=224,
|
365 |
+
patch_size=16,
|
366 |
+
width=768,
|
367 |
+
layers=12,
|
368 |
+
heads=12,
|
369 |
+
output_dim=512,
|
370 |
+
use_checkpoint=use_checkpoint,
|
371 |
+
checkpoint_num=checkpoint_num,
|
372 |
+
t_size=t_size,
|
373 |
+
dw_reduction=dw_reduction,
|
374 |
+
backbone_drop_path_rate=backbone_drop_path_rate,
|
375 |
+
temporal_downsample=temporal_downsample,
|
376 |
+
no_lmhra=no_lmhra,
|
377 |
+
double_lmhra=double_lmhra,
|
378 |
+
return_list=return_list,
|
379 |
+
n_layers=n_layers,
|
380 |
+
n_dim=n_dim,
|
381 |
+
n_head=n_head,
|
382 |
+
mlp_factor=mlp_factor,
|
383 |
+
drop_path_rate=drop_path_rate,
|
384 |
+
mlp_dropout=mlp_dropout,
|
385 |
+
cls_dropout=cls_dropout,
|
386 |
+
num_classes=num_classes,
|
387 |
+
)
|
388 |
+
|
389 |
+
if pretrained:
|
390 |
+
print('load pretrained weights')
|
391 |
+
state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu')
|
392 |
+
load_state_dict(model, state_dict)
|
393 |
+
return model.eval()
|
394 |
+
|
395 |
+
|
396 |
+
def uniformerv2_l14(
|
397 |
+
pretrained=True, use_checkpoint=False, checkpoint_num=[0],
|
398 |
+
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0.,
|
399 |
+
temporal_downsample=True,
|
400 |
+
no_lmhra=False, double_lmhra=True,
|
401 |
+
return_list=[20, 21, 22, 23],
|
402 |
+
n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0.,
|
403 |
+
mlp_dropout=[0.5, 0.5, 0.5, 0.5],
|
404 |
+
cls_dropout=0.5, num_classes=400,
|
405 |
+
):
|
406 |
+
model = VisionTransformer(
|
407 |
+
input_resolution=224,
|
408 |
+
patch_size=14,
|
409 |
+
width=1024,
|
410 |
+
layers=24,
|
411 |
+
heads=16,
|
412 |
+
output_dim=768,
|
413 |
+
use_checkpoint=use_checkpoint,
|
414 |
+
checkpoint_num=checkpoint_num,
|
415 |
+
t_size=t_size,
|
416 |
+
dw_reduction=dw_reduction,
|
417 |
+
backbone_drop_path_rate=backbone_drop_path_rate,
|
418 |
+
temporal_downsample=temporal_downsample,
|
419 |
+
no_lmhra=no_lmhra,
|
420 |
+
double_lmhra=double_lmhra,
|
421 |
+
return_list=return_list,
|
422 |
+
n_layers=n_layers,
|
423 |
+
n_dim=n_dim,
|
424 |
+
n_head=n_head,
|
425 |
+
mlp_factor=mlp_factor,
|
426 |
+
drop_path_rate=drop_path_rate,
|
427 |
+
mlp_dropout=mlp_dropout,
|
428 |
+
cls_dropout=cls_dropout,
|
429 |
+
num_classes=num_classes,
|
430 |
+
)
|
431 |
+
|
432 |
+
if pretrained:
|
433 |
+
print('load pretrained weights')
|
434 |
+
state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu')
|
435 |
+
load_state_dict(model, state_dict)
|
436 |
+
return model.eval()
|
437 |
+
|
438 |
+
|
439 |
+
def uniformerv2_l14_336(
|
440 |
+
pretrained=True, use_checkpoint=False, checkpoint_num=[0],
|
441 |
+
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0.,
|
442 |
+
no_temporal_downsample=True,
|
443 |
+
no_lmhra=False, double_lmhra=True,
|
444 |
+
return_list=[20, 21, 22, 23],
|
445 |
+
n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0.,
|
446 |
+
mlp_dropout=[0.5, 0.5, 0.5, 0.5],
|
447 |
+
cls_dropout=0.5, num_classes=400,
|
448 |
+
):
|
449 |
+
model = VisionTransformer(
|
450 |
+
input_resolution=336,
|
451 |
+
patch_size=14,
|
452 |
+
width=1024,
|
453 |
+
layers=24,
|
454 |
+
heads=16,
|
455 |
+
output_dim=768,
|
456 |
+
use_checkpoint=use_checkpoint,
|
457 |
+
checkpoint_num=checkpoint_num,
|
458 |
+
t_size=t_size,
|
459 |
+
dw_reduction=dw_reduction,
|
460 |
+
backbone_drop_path_rate=backbone_drop_path_rate,
|
461 |
+
no_temporal_downsample=no_temporal_downsample,
|
462 |
+
no_lmhra=no_lmhra,
|
463 |
+
double_lmhra=double_lmhra,
|
464 |
+
return_list=return_list,
|
465 |
+
n_layers=n_layers,
|
466 |
+
n_dim=n_dim,
|
467 |
+
n_head=n_head,
|
468 |
+
mlp_factor=mlp_factor,
|
469 |
+
drop_path_rate=drop_path_rate,
|
470 |
+
mlp_dropout=mlp_dropout,
|
471 |
+
cls_dropout=cls_dropout,
|
472 |
+
num_classes=num_classes,
|
473 |
+
)
|
474 |
+
|
475 |
+
if pretrained:
|
476 |
+
print('load pretrained weights')
|
477 |
+
state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu')
|
478 |
+
load_state_dict(model, state_dict)
|
479 |
+
return model.eval()
|
480 |
+
|
481 |
+
|
482 |
+
if __name__ == '__main__':
|
483 |
+
import time
|
484 |
+
from fvcore.nn import FlopCountAnalysis
|
485 |
+
from fvcore.nn import flop_count_table
|
486 |
+
import numpy as np
|
487 |
+
|
488 |
+
seed = 4217
|
489 |
+
np.random.seed(seed)
|
490 |
+
torch.manual_seed(seed)
|
491 |
+
torch.cuda.manual_seed(seed)
|
492 |
+
torch.cuda.manual_seed_all(seed)
|
493 |
+
num_frames = 16
|
494 |
+
|
495 |
+
model = uniformerv2_l14(
|
496 |
+
pretrained=False,
|
497 |
+
t_size=num_frames, backbone_drop_path_rate=0., drop_path_rate=0.,
|
498 |
+
dw_reduction=1.5,
|
499 |
+
no_lmhra=False,
|
500 |
+
temporal_downsample=True,
|
501 |
+
return_list=[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
|
502 |
+
mlp_dropout=[0.5]*16,
|
503 |
+
n_layers=16
|
504 |
+
)
|
505 |
+
print(model)
|
506 |
+
|
507 |
+
flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224))
|
508 |
+
s = time.time()
|
509 |
+
print(flop_count_table(flops, max_depth=1))
|
510 |
+
print(time.time()-s)
|
yoga.mp4
ADDED
Binary file (776 kB). View file
|
|