Aneeth commited on
Commit
05adf37
·
verified ·
1 Parent(s): bda122f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from peft import AutoPeftModelForCausalLM
3
+ from transformers import AutoTokenizer, GPTQConfig, GenerationConfig
4
+
5
+ gptq_config = GPTQConfig(bits=4, disable_exllama=True)
6
+ model = AutoPeftModelForCausalLM.from_pretrained(
7
+ "Aneeth/zephyr_10k",
8
+ return_dict=True,
9
+ torch_dtype=torch.float32,
10
+ trust_remote_code=True,
11
+ quantization_config=gptq_config
12
+ )
13
+
14
+ tokenizer = AutoTokenizer.from_pretrained("Aneeth/zephyr_10k")
15
+ generation_config = GenerationConfig(
16
+ do_sample=True,
17
+ top_k=1,
18
+ temperature=0.5,
19
+ max_new_tokens=5000,
20
+ pad_token_id=tokenizer.eos_token_id,
21
+ )
22
+
23
+ def process_data_sample(example):
24
+ processed_example = "\n Generate an authentic job description using the given input.\n\n" + example["instruction"] + "\n\n"
25
+ return processed_example
26
+
27
+ def generate_text(prompt):
28
+ inp_str = process_data_sample({"instruction": prompt})
29
+ inputs = tokenizer(inp_str, return_tensors="pt").to("cpu")
30
+ outputs = model.generate(**inputs, generation_config=generation_config)
31
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
32
+ return response
33
+
34
+ iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", live=True)
35
+ iface.launch()