Spaces:
Running
Running
File size: 3,271 Bytes
d0b6563 9776097 bdeb120 17855f6 3251e7e 156316e fef87f0 9776097 029f491 9776097 fef87f0 af37368 9776097 af37368 9776097 d3ac099 9776097 bdeb120 9776097 17855f6 09a8258 3a4982a 3251e7e fef87f0 9776097 3a4982a f82b319 3a4982a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import gradio as gr
import os
import requests
import torch
import zipfile
from TTS.api import TTS
from pydub import AudioSegment
os.environ["COQUI_TOS_AGREED"] = "1"
MODEL_PATH = "tts_models/multilingual/multi-dataset/xtts_v2"
LANGUAGES = ["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko", "hi"]
AUDIO_FORMATS = [".wav", ".mp3", ".flac", ".mp4"]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
tts = TTS(MODEL_PATH).to(device)
def download_audio_file(url):
try:
response = requests.get(url)
file_extension = os.path.splitext(url)[-1].lower()
file_name = f"temp{file_extension}"
with open(file_name, "wb") as f:
f.write(response.content)
return file_name
except requests.exceptions.RequestException as e:
print(f"Error downloading audio file: {e}")
return None
def extract_zip_file(zip_file):
try:
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall()
return True
except zipfile.BadZipfile as e:
print(f"Error extracting zip file: {e}")
return False
def convert_to_wav(input_audio_file):
file_extension = os.path.splitext(input_audio_file)[-1].lower()
if file_extension!= ".wav":
audio = AudioSegment.from_file(input_audio_file)
audio.export("temp.wav", format="wav")
os.remove(input_audio_file)
return "temp.wav"
return input_audio_file
def synthesize_text(text, input_audio_file, language):
input_audio_file = convert_to_wav(input_audio_file)
tts.tts_to_file(text=text, speaker_wav=input_audio_file, language=language, file_path="./output.wav")
return "./output.wav"
def clone(text, input_file, language, url=None, use_url=False):
if use_url:
if url is None:
return None
input_audio_file = download_audio_file(url)
if input_audio_file is None:
return None
else:
if input_file is None:
return None
if input_file.name.endswith(".zip"):
if extract_zip_file(input_file):
input_audio_file = [f for f in os.listdir('.') if os.path.isfile(f) and f.endswith(tuple(AUDIO_FORMATS))]
if len(input_audio_file) == 1:
input_audio_file = input_audio_file[0]
else:
return "Error: Please select a single audio file from the extracted files."
else:
input_audio_file = input_file.name
output_file_path = synthesize_text(text, input_audio_file, language)
return output_file_path
iface = gr.Interface(
fn=clone,
inputs=["text", gr.File(label="Input File", file_types=[".zip", *AUDIO_FORMATS]), gr.Dropdown(choices=LANGUAGES, label="Language"), gr.Text(label="URL"), gr.Checkbox(label="Use URL", value=False)],
outputs=gr.Audio(type='filepath'),
title='Voice Clone',
description=""" by [Angetyde](https://youtube.com/@Angetyde?si=7nusP31nTumIkPTF) and [Tony Assi](https://www.tonyassi.com/ ) use this colab with caution <3. """,
theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")
)
iface.launch(share=True) |