Spaces:
Running
Running
File size: 1,668 Bytes
f94a020 58b2f84 f94a020 3251e7e fef87f0 58b2f84 fef87f0 d3ac099 ca8f9fa fef87f0 ca8f9fa fef87f0 3251e7e fef87f0 3251e7e fef87f0 3251e7e fef87f0 f99e3f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import torch
import os
import zipfile
import requests
from TTS.api import TTS
# Set environment variable
os.environ["COQUI_TOS_AGREED"] = "1"
# Define constants
MODEL_PATH = "tts_models/multilingual/multi-dataset/xtts_v2"
LANGUAGES = ["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko", "hi"]
# Automatically detect and use GPU if available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load TTS model
tts = TTS(MODEL_PATH).to(device)
def clone(text, url, language):
# Download and extract audio file
response = requests.get(url)
with open("temp.zip", "wb") as f:
f.write(response.content)
with zipfile.ZipFile("temp.zip", "r") as zip_ref:
zip_ref.extractall()
audio_file = [f for f in os.listdir(".") if f.endswith(".wav")][0]
# Generate audio using TTS model
tts.tts_to_file(text=text, speaker_wav=audio_file, language=language, file_path="./output.wav")
# Clean up
os.remove(audio_file)
os.remove("temp.zip")
return "./output.wav"
# Create Gradio interface
iface = gr.Interface(
fn=clone,
inputs=["text", gr.components.Text(label="URL"), gr.Dropdown(choices=LANGUAGES, label="Language")],
outputs=gr.Audio(type='filepath'),
title='Voice Clone',
description=""" by [Angetyde](https://youtube.com/@Angetyde?si=7nusP31nTumIkPTF) and [Tony Assi](https://www.tonyassi.com/ ) use this colab with caution <3. """,
theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")
)
# Launch Gradio interface
iface.launch(share=True) |