|
|
|
import gradio as gr |
|
import torch |
|
from diffusers.utils import export_to_video |
|
|
|
import os |
|
from PIL import Image |
|
|
|
import torch.nn.functional as F |
|
|
|
from diffusers import IFSuperResolutionPipeline, VideoToVideoSDPipeline |
|
from diffusers.utils import export_to_video |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from showone.pipelines import TextToVideoIFPipeline, TextToVideoIFInterpPipeline, TextToVideoIFSuperResolutionPipeline |
|
from showone.pipelines.pipeline_t2v_base_pixel import tensor2vid |
|
from showone.pipelines.pipeline_t2v_sr_pixel_cond import TextToVideoIFSuperResolutionPipeline_Cond |
|
|
|
|
|
|
|
pretrained_model_path = "showlab/show-1-base" |
|
pipe_base = TextToVideoIFPipeline.from_pretrained( |
|
pretrained_model_path, |
|
torch_dtype=torch.float16, |
|
variant="fp16" |
|
) |
|
pipe_base.enable_model_cpu_offload() |
|
|
|
|
|
pretrained_model_path = "showlab/show-1-interpolation" |
|
pipe_interp_1 = TextToVideoIFInterpPipeline.from_pretrained( |
|
pretrained_model_path, |
|
text_encoder=None, |
|
torch_dtype=torch.float16, |
|
variant="fp16" |
|
) |
|
pipe_interp_1.enable_model_cpu_offload() |
|
|
|
|
|
|
|
pretrained_model_path = "DeepFloyd/IF-II-L-v1.0" |
|
pipe_sr_1_image = IFSuperResolutionPipeline.from_pretrained( |
|
pretrained_model_path, |
|
text_encoder=None, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
pipe_sr_1_image.enable_model_cpu_offload() |
|
|
|
pretrained_model_path = "showlab/show-1-sr1" |
|
pipe_sr_1_cond = TextToVideoIFSuperResolutionPipeline_Cond.from_pretrained( |
|
pretrained_model_path, |
|
text_encoder=None, |
|
torch_dtype=torch.float16 |
|
) |
|
pipe_sr_1_cond.enable_model_cpu_offload() |
|
|
|
|
|
pretrained_model_path = "showlab/show-1-sr2" |
|
pipe_sr_2 = VideoToVideoSDPipeline.from_pretrained( |
|
pretrained_model_path, |
|
torch_dtype=torch.float16 |
|
) |
|
pipe_sr_2.enable_model_cpu_offload() |
|
pipe_sr_2.enable_vae_slicing() |
|
|
|
output_dir = "./outputs" |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
def infer(prompt): |
|
print(prompt) |
|
negative_prompt = "low resolution, blur" |
|
|
|
|
|
prompt_embeds, negative_embeds = pipe_base.encode_prompt(prompt) |
|
|
|
|
|
video_frames = pipe_base( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
num_frames=8, |
|
height=40, |
|
width=64, |
|
num_inference_steps=75, |
|
guidance_scale=9.0, |
|
output_type="pt" |
|
).frames |
|
|
|
|
|
bsz, channel, num_frames, height, width = video_frames.shape |
|
new_num_frames = 3 * (num_frames - 1) + num_frames |
|
new_video_frames = torch.zeros((bsz, channel, new_num_frames, height, width), |
|
dtype=video_frames.dtype, device=video_frames.device) |
|
new_video_frames[:, :, torch.arange(0, new_num_frames, 4), ...] = video_frames |
|
init_noise = randn_tensor((bsz, channel, 5, height, width), dtype=video_frames.dtype, |
|
device=video_frames.device) |
|
|
|
for i in range(num_frames - 1): |
|
batch_i = torch.zeros((bsz, channel, 5, height, width), dtype=video_frames.dtype, device=video_frames.device) |
|
batch_i[:, :, 0, ...] = video_frames[:, :, i, ...] |
|
batch_i[:, :, -1, ...] = video_frames[:, :, i + 1, ...] |
|
batch_i = pipe_interp_1( |
|
pixel_values=batch_i, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
num_frames=batch_i.shape[2], |
|
height=40, |
|
width=64, |
|
num_inference_steps=50, |
|
guidance_scale=4.0, |
|
output_type="pt", |
|
init_noise=init_noise, |
|
cond_interpolation=True, |
|
).frames |
|
|
|
new_video_frames[:, :, i * 4:i * 4 + 5, ...] = batch_i |
|
|
|
video_frames = new_video_frames |
|
|
|
|
|
bsz, channel, num_frames, height, width = video_frames.shape |
|
window_size, stride = 8, 7 |
|
new_video_frames = torch.zeros( |
|
(bsz, channel, num_frames, height * 4, width * 4), |
|
dtype=video_frames.dtype, |
|
device=video_frames.device) |
|
for i in range(0, num_frames - window_size + 1, stride): |
|
batch_i = video_frames[:, :, i:i + window_size, ...] |
|
|
|
if i == 0: |
|
first_frame_cond = pipe_sr_1_image( |
|
image=video_frames[:, :, 0, ...], |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
height=height * 4, |
|
width=width * 4, |
|
num_inference_steps=50, |
|
guidance_scale=4.0, |
|
noise_level=150, |
|
output_type="pt" |
|
).images |
|
first_frame_cond = first_frame_cond.unsqueeze(2) |
|
else: |
|
first_frame_cond = new_video_frames[:, :, i:i + 1, ...] |
|
|
|
batch_i = pipe_sr_1_cond( |
|
image=batch_i, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
first_frame_cond=first_frame_cond, |
|
height=height * 4, |
|
width=width * 4, |
|
num_inference_steps=50, |
|
guidance_scale=7.0, |
|
noise_level=250, |
|
output_type="pt" |
|
).frames |
|
new_video_frames[:, :, i:i + window_size, ...] = batch_i |
|
|
|
video_frames = new_video_frames |
|
|
|
|
|
video_frames = [Image.fromarray(frame).resize((576, 320)) for frame in tensor2vid(video_frames.clone())] |
|
video_frames = pipe_sr_2( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
video=video_frames, |
|
strength=0.8, |
|
num_inference_steps=50, |
|
).frames |
|
|
|
video_path = export_to_video(video_frames, f"{output_dir}/{prompt[:200]}.mp4") |
|
print(video_path) |
|
return video_path |
|
|
|
css = """ |
|
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;} |
|
a {text-decoration-line: underline; font-weight: 600;} |
|
.animate-spin { |
|
animation: spin 1s linear infinite; |
|
} |
|
|
|
@keyframes spin { |
|
from { |
|
transform: rotate(0deg); |
|
} |
|
to { |
|
transform: rotate(360deg); |
|
} |
|
} |
|
|
|
#share-btn-container { |
|
display: flex; |
|
padding-left: 0.5rem !important; |
|
padding-right: 0.5rem !important; |
|
background-color: #000000; |
|
justify-content: center; |
|
align-items: center; |
|
border-radius: 9999px !important; |
|
max-width: 15rem; |
|
height: 36px; |
|
} |
|
|
|
div#share-btn-container > div { |
|
flex-direction: row; |
|
background: black; |
|
align-items: center; |
|
} |
|
|
|
#share-btn-container:hover { |
|
background-color: #060606; |
|
} |
|
|
|
#share-btn { |
|
all: initial; |
|
color: #ffffff; |
|
font-weight: 600; |
|
cursor:pointer; |
|
font-family: 'IBM Plex Sans', sans-serif; |
|
margin-left: 0.5rem !important; |
|
padding-top: 0.5rem !important; |
|
padding-bottom: 0.5rem !important; |
|
right:0; |
|
} |
|
|
|
#share-btn * { |
|
all: unset; |
|
} |
|
|
|
#share-btn-container div:nth-child(-n+2){ |
|
width: auto !important; |
|
min-height: 0px !important; |
|
} |
|
|
|
#share-btn-container .wrap { |
|
display: none !important; |
|
} |
|
|
|
#share-btn-container.hidden { |
|
display: none!important; |
|
} |
|
img[src*='#center'] { |
|
display: inline-block; |
|
margin: unset; |
|
} |
|
|
|
.footer { |
|
margin-bottom: 45px; |
|
margin-top: 10px; |
|
text-align: center; |
|
border-bottom: 1px solid #e5e5e5; |
|
} |
|
.footer>p { |
|
font-size: .8rem; |
|
display: inline-block; |
|
padding: 0 10px; |
|
transform: translateY(10px); |
|
background: white; |
|
} |
|
.dark .footer { |
|
border-color: #303030; |
|
} |
|
.dark .footer>p { |
|
background: #0b0f19; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown( |
|
""" |
|
<h1 style="text-align: center;">Show-1 Text-to-Video</h1> |
|
<p style="text-align: center;"> |
|
A text-to-video generation model that marries the strength and alleviates the weakness of pixel-based and latent-based VDMs. <br /> |
|
</p> |
|
|
|
<p style="text-align: center;"> |
|
<a href="https://arxiv.org/abs/2309.15818" target="_blank">Paper</a> | |
|
<a href="https://showlab.github.io/Show-1" target="_blank">Project Page</a> | |
|
<a href="https://github.com/showlab/Show-1" target="_blank">Github</a> |
|
</p> |
|
|
|
""" |
|
) |
|
|
|
prompt_in = gr.Textbox(label="Prompt", placeholder="A panda taking a selfie", elem_id="prompt-in") |
|
|
|
|
|
submit_btn = gr.Button("Submit") |
|
video_result = gr.Video(label="Video Output", elem_id="video-output") |
|
|
|
gr.HTML(""" |
|
<div class="footer"> |
|
<p> |
|
Demo adapted from <a href="https://huggingface.co/spaces/fffiloni/zeroscope" target="_blank">zeroscope</a> |
|
by 🤗 <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> |
|
</p> |
|
</div> |
|
""") |
|
|
|
submit_btn.click(fn=infer, |
|
inputs=[prompt_in], |
|
outputs=[video_result], |
|
api_name="show-1") |
|
|
|
demo.queue(max_size=12).launch(show_api=True) |