|
import os |
|
import imageio |
|
from PIL import Image |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from diffusers import IFSuperResolutionPipeline, VideoToVideoSDPipeline |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from showone.pipelines import TextToVideoIFPipeline, TextToVideoIFInterpPipeline, TextToVideoIFSuperResolutionPipeline |
|
from showone.pipelines.pipeline_t2v_base_pixel import tensor2vid |
|
from showone.pipelines.pipeline_t2v_sr_pixel_cond import TextToVideoIFSuperResolutionPipeline_Cond |
|
|
|
|
|
|
|
|
|
|
|
pretrained_model_path = "showlab/show-1-base" |
|
pipe_base = TextToVideoIFPipeline.from_pretrained( |
|
pretrained_model_path, |
|
torch_dtype=torch.float16, |
|
variant="fp16" |
|
) |
|
pipe_base.enable_model_cpu_offload() |
|
|
|
|
|
pretrained_model_path = "showlab/show-1-interpolation" |
|
pipe_interp_1 = TextToVideoIFInterpPipeline.from_pretrained( |
|
pretrained_model_path, |
|
torch_dtype=torch.float16, |
|
variant="fp16" |
|
) |
|
pipe_interp_1.enable_model_cpu_offload() |
|
|
|
|
|
|
|
pretrained_model_path = "DeepFloyd/IF-II-L-v1.0" |
|
pipe_sr_1_image = IFSuperResolutionPipeline.from_pretrained( |
|
pretrained_model_path, |
|
text_encoder=None, |
|
torch_dtype=torch.float16, |
|
variant="fp16" |
|
) |
|
pipe_sr_1_image.enable_model_cpu_offload() |
|
|
|
pretrained_model_path = "showlab/show-1-sr1" |
|
pipe_sr_1_cond = TextToVideoIFSuperResolutionPipeline_Cond.from_pretrained( |
|
pretrained_model_path, |
|
torch_dtype=torch.float16 |
|
) |
|
pipe_sr_1_cond.enable_model_cpu_offload() |
|
|
|
|
|
pretrained_model_path = "showlab/show-1-sr2" |
|
pipe_sr_2 = VideoToVideoSDPipeline.from_pretrained( |
|
pretrained_model_path, |
|
torch_dtype=torch.float16 |
|
) |
|
pipe_sr_2.enable_model_cpu_offload() |
|
pipe_sr_2.enable_vae_slicing() |
|
|
|
|
|
|
|
prompt = "A burning lamborghini driving on rainbow." |
|
output_dir = "./outputs/example" |
|
negative_prompt = "low resolution, blur" |
|
|
|
seed = 345 |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
prompt_embeds, negative_embeds = pipe_base.encode_prompt(prompt) |
|
|
|
|
|
video_frames = pipe_base( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
num_frames=8, |
|
height=40, |
|
width=64, |
|
num_inference_steps=75, |
|
guidance_scale=9.0, |
|
generator=torch.manual_seed(seed), |
|
output_type="pt" |
|
).frames |
|
|
|
imageio.mimsave(f"{output_dir}/{prompt}_base.gif", tensor2vid(video_frames.clone()), fps=2) |
|
|
|
|
|
bsz, channel, num_frames, height, width = video_frames.shape |
|
new_num_frames = 3 * (num_frames - 1) + num_frames |
|
new_video_frames = torch.zeros((bsz, channel, new_num_frames, height, width), |
|
dtype=video_frames.dtype, device=video_frames.device) |
|
new_video_frames[:, :, torch.arange(0, new_num_frames, 4), ...] = video_frames |
|
init_noise = randn_tensor((bsz, channel, 5, height, width), dtype=video_frames.dtype, |
|
device=video_frames.device, generator=torch.manual_seed(seed)) |
|
|
|
for i in range(num_frames - 1): |
|
batch_i = torch.zeros((bsz, channel, 5, height, width), dtype=video_frames.dtype, device=video_frames.device) |
|
batch_i[:, :, 0, ...] = video_frames[:, :, i, ...] |
|
batch_i[:, :, -1, ...] = video_frames[:, :, i + 1, ...] |
|
batch_i = pipe_interp_1( |
|
pixel_values=batch_i, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
num_frames=batch_i.shape[2], |
|
height=40, |
|
width=64, |
|
num_inference_steps=75, |
|
guidance_scale=4.0, |
|
generator=torch.manual_seed(seed), |
|
output_type="pt", |
|
init_noise=init_noise, |
|
cond_interpolation=True, |
|
).frames |
|
|
|
new_video_frames[:, :, i * 4:i * 4 + 5, ...] = batch_i |
|
|
|
video_frames = new_video_frames |
|
imageio.mimsave(f"{output_dir}/{prompt}_interp.gif", tensor2vid(video_frames.clone()), fps=8) |
|
|
|
|
|
bsz, channel, num_frames, height, width = video_frames.shape |
|
window_size, stride = 8, 7 |
|
new_video_frames = torch.zeros( |
|
(bsz, channel, num_frames, height * 4, width * 4), |
|
dtype=video_frames.dtype, |
|
device=video_frames.device) |
|
for i in range(0, num_frames - window_size + 1, stride): |
|
batch_i = video_frames[:, :, i:i + window_size, ...] |
|
all_frame_cond = None |
|
|
|
if i == 0: |
|
first_frame_cond = pipe_sr_1_image( |
|
image=video_frames[:, :, 0, ...], |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
height=height * 4, |
|
width=width * 4, |
|
num_inference_steps=70, |
|
guidance_scale=4.0, |
|
noise_level=150, |
|
generator=torch.manual_seed(seed), |
|
output_type="pt" |
|
).images |
|
first_frame_cond = first_frame_cond.unsqueeze(2) |
|
else: |
|
first_frame_cond = new_video_frames[:, :, i:i + 1, ...] |
|
|
|
batch_i = pipe_sr_1_cond( |
|
image=batch_i, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
first_frame_cond=first_frame_cond, |
|
height=height * 4, |
|
width=width * 4, |
|
num_inference_steps=125, |
|
guidance_scale=7.0, |
|
noise_level=250, |
|
generator=torch.manual_seed(seed), |
|
output_type="pt" |
|
).frames |
|
new_video_frames[:, :, i:i + window_size, ...] = batch_i |
|
|
|
video_frames = new_video_frames |
|
imageio.mimsave(f"{output_dir}/{prompt}_sr1.gif", tensor2vid(video_frames.clone()), fps=8) |
|
|
|
|
|
video_frames = [Image.fromarray(frame).resize((576, 320)) for frame in tensor2vid(video_frames.clone())] |
|
video_frames = pipe_sr_2( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
video=video_frames, |
|
strength=0.8, |
|
num_inference_steps=50, |
|
generator=torch.manual_seed(seed), |
|
output_type="pt" |
|
).frames |
|
|
|
imageio.mimsave(f"{output_dir}/{prompt}.gif", tensor2vid(video_frames.clone()), fps=8) |
|
|