File size: 3,503 Bytes
f293d7e
 
 
 
 
 
 
 
 
8d1a039
f293d7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d1a039
f293d7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d1a039
 
f293d7e
 
 
 
8d1a039
 
f293d7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d1a039
f293d7e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr


from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer
)
from peft import PeftModel
import torch
import time

model_path = "Qwen/Qwen1.5-1.8B-Chat"
lora_path = "AngoHF/EssayGPT" #+ "/checkpoint-100"

if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

tokenizer = AutoTokenizer.from_pretrained(
    model_path,
)
config_kwargs = {"device_map": device}

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    **config_kwargs
)

model = PeftModel.from_pretrained(model, lora_path)
model = model.merge_and_unload()
model.eval()

model.config.use_cache = True


MAX_MATERIALS = 4


def call(related_materials, materials, question):
    query_texts = [f"材料{i + 1}\n{material}" for i, material in enumerate(materials) if i in related_materials]
    query_texts.append(f"问题:{question}")
    query = "\n".join(query_texts)
    messages = [
        {"role": "system", "content": "请你根据以下提供的材料来回答问题"},
        {"role": "user", "content": query}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)
    print(f"Input Token Length: {len(model_inputs.input_ids[0])}")
    start_time = time.time()
    generated_ids = model.generate(
        model_inputs.input_ids,
        max_length=8096
    )
    
    print(f"Inference Cost Time: {time.time() - start_time}")
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return response


def create_ui():
    with gr.Blocks() as app:
        gr.Markdown("""<center><font size=8>EssayGPT-申论大模型</center>""")
        gr.Markdown(
            """<center><font size=4>1.把材料填入对应位置 2.输入问题和要求 3.选择解答问题需要的相关材料 4.点击"提问!"</center>""")
        with gr.Row():
            with gr.Column():
                materials = []

                for i in range(MAX_MATERIALS):
                    with gr.Tab(f"材料{i + 1}"):
                        materials.append(gr.Textbox(label="材料内容"))
            with gr.Column():
                related_materials = gr.Dropdown(
                    choices=list(range(1, MAX_MATERIALS + 1)), multiselect=True,
                    label="问题所需相关材料")
                question = gr.Textbox(label="问题")
                submit = gr.Button("提问!")
                answer = gr.Textbox(label="回答")
        build_ui({"materials": materials, "related_materials": related_materials, "question": question,
                  "submit": submit, "answer": answer})
    return app


def build_ui(components):
    def func(related_materials, question, *materials):
        if not related_materials:
            return "请选择问题所需相关材料"
        related_materials = [i - 1 for i in related_materials]
        return call(related_materials, materials, question)

    components["submit"].click(func,
                               [components["related_materials"], components["question"], *components["materials"]],
                               components["answer"])


def run():
    app = create_ui()
    app.queue()
    app.launch()


if __name__ == '__main__':
    run()