File size: 9,320 Bytes
5c91488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import re
import os
import torch

import numpy as np
import scipy.signal as signal

class Generator:
    def __init__(self, sample_rate = 16000, hop_length = 160, f0_min = 50, f0_max = 1100, is_half = False, device = "cpu", providers = None, f0_onnx_mode = False):
        self.sample_rate = sample_rate
        self.hop_length = hop_length
        self.f0_min = f0_min
        self.f0_max = f0_max
        self.is_half = is_half
        self.device = device
        self.providers = providers
        self.f0_onnx_mode = f0_onnx_mode
        self.window = 160

    def calculator(self, f0_method, x, p_len = None, filter_radius = 3):
        if p_len is None: p_len = x.shape[0] // self.window
        model = self.get_f0_hybrid if "hybrid" in f0_method else self.compute_f0
        return model(f0_method, x, p_len, filter_radius if filter_radius % 2 != 0 else filter_radius + 1)

    def _interpolate_f0(self, f0):
        data = np.reshape(f0, (f0.size, 1))
        vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
        vuv_vector[data > 0.0] = 1.0
        vuv_vector[data <= 0.0] = 0.0
        ip_data = data
        frame_number = data.size
        last_value = 0.0

        for i in range(frame_number):
            if data[i] <= 0.0:
                j = i + 1

                for j in range(i + 1, frame_number):
                    if data[j] > 0.0: break

                if j < frame_number - 1:
                    if last_value > 0.0:
                        step = (data[j] - data[i - 1]) / float(j - i)

                        for k in range(i, j):
                            ip_data[k] = data[i - 1] + step * (k - i + 1)
                    else:
                        for k in range(i, j):
                            ip_data[k] = data[j]
                else:
                    for k in range(i, frame_number):
                        ip_data[k] = last_value
            else:
                ip_data[i] = data[i]
                last_value = data[i]

        return ip_data[:, 0], vuv_vector[:, 0]

    def _resize_f0(self, x, target_len):
        source = np.array(x)
        source[source < 0.001] = np.nan
        return np.nan_to_num(np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source))
    
    def compute_f0(self, f0_method, x, p_len, filter_radius):
        f0 = {"pm": lambda: self.get_f0_pm(x, p_len), "dio": lambda: self.get_f0_pyworld(x, p_len, filter_radius, "dio"), "mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, "tiny"), "mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, "small"), "mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, "medium"), "mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, "large"), "mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, "full"), "crepe-tiny": lambda: self.get_f0_crepe(x, p_len, "tiny"), "crepe-small": lambda: self.get_f0_crepe(x, p_len, "small"), "crepe-medium": lambda: self.get_f0_crepe(x, p_len, "medium"), "crepe-large": lambda: self.get_f0_crepe(x, p_len, "large"), "crepe-full": lambda: self.get_f0_crepe(x, p_len, "full"), "fcpe": lambda: self.get_f0_fcpe(x, p_len), "fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, legacy=True), "rmvpe": lambda: self.get_f0_rmvpe(x, p_len), "rmvpe-legacy": lambda: self.get_f0_rmvpe(x, p_len, legacy=True), "harvest": lambda: self.get_f0_pyworld(x, p_len, filter_radius, "harvest"), "yin": lambda: self.get_f0_yin(x, p_len, mode="yin"), "pyin": lambda: self.get_f0_yin(x, p_len, mode="pyin"), "swipe": lambda: self.get_f0_swipe(x, p_len)}
        return f0[f0_method]()
    
    def get_f0_hybrid(self, methods_str, x, p_len, filter_radius):
        methods_str = re.search("hybrid\[(.+)\]", methods_str)
        if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
        f0_computation_stack, resampled_stack = [], []

        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)

        for method in methods:
            f0 = None
            f0 = self.compute_f0(method, x, p_len, filter_radius)
            f0_computation_stack.append(f0) 

        for f0 in f0_computation_stack:
            resampled_stack.append(np.interp(np.linspace(0, len(f0), p_len), np.arange(len(f0)), f0))

        return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
    
    def get_f0_pm(self, x, p_len):
        import parselmouth

        f0 = (parselmouth.Sound(x, self.sample_rate).to_pitch_ac(time_step=160 / self.sample_rate * 1000 / 1000, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"])
        pad_size = (p_len - len(f0) + 1) // 2

        if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
        return self._interpolate_f0(f0)[0]
    
    def get_f0_mangio_crepe(self, x, p_len, model="full"):
        from main.library.predictors.CREPE import predict

        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)

        audio = torch.unsqueeze(torch.from_numpy(x).to(self.device, copy=True), dim=0)
        if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()

        return self._interpolate_f0(self._resize_f0(predict(audio.detach(), self.sample_rate, self.hop_length, self.f0_min, self.f0_max, model, batch_size=self.hop_length * 2, device=self.device, pad=True, providers=self.providers, onnx=self.f0_onnx_mode).squeeze(0).cpu().float().numpy(), p_len))[0]
    
    def get_f0_crepe(self, x, p_len, model="full"):
        from main.library.predictors.CREPE import predict, mean, median

        f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.sample_rate, self.window, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=self.providers, onnx=self.f0_onnx_mode)
        f0, pd = mean(f0, 3), median(pd, 3)
        f0[pd < 0.1] = 0

        return self._interpolate_f0(self._resize_f0(f0[0].cpu().numpy(), p_len))[0]
    
    def get_f0_fcpe(self, x, p_len, legacy=False):
        if not hasattr(self, "fcpe"):
            from main.library.predictors.FCPE import FCPE
            self.fcpe = FCPE(os.path.join("assets", "models", "predictors", ("fcpe_legacy" if legacy else "fcpe") + (".onnx" if self.f0_onnx_mode else ".pt")), hop_length=self.hop_length, f0_min=self.f0_min, f0_max=self.f0_max, dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.03 if legacy else 0.006, providers=self.providers, onnx=self.f0_onnx_mode, legacy=legacy)
        
        f0 = self.fcpe.compute_f0(x, p_len)
        if self.f0_onnx_mode: del self.fcpe

        return f0
    
    def get_f0_rmvpe(self, x, p_len, legacy=False):
        if not hasattr(self, "rmvpe"):
            from main.library.predictors.RMVPE import RMVPE
            self.rmvpe = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if self.f0_onnx_mode else ".pt")), is_half=self.is_half, device=self.device, onnx=self.f0_onnx_mode, providers=self.providers)

        f0 = self.rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else self.rmvpe.infer_from_audio(x, thred=0.03)
        if self.f0_onnx_mode: del self.rmvpe, self.rmvpe.model

        return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
    
    def get_f0_pyworld(self, x, p_len, filter_radius, model="harvest"):
        if not hasattr(self, "pw"):
            from main.library.predictors.WORLD import PYWORLD
            self.pw = PYWORLD()

        x = x.astype(np.double)
        f0, t = self.pw.harvest(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.window / self.sample_rate) if model == "harvest" else self.pw.dio(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.window / self.sample_rate)
        f0 = self.pw.stonemask(x, self.sample_rate, t, f0)

        if filter_radius > 2 and model == "harvest": f0 = signal.medfilt(f0, filter_radius)
        elif model == "dio":
            for index, pitch in enumerate(f0):
                f0[index] = round(pitch, 1)

        return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
    
    def get_f0_swipe(self, x, p_len):
        from main.library.predictors.SWIPE import swipe, stonemask

        f0, t = swipe(x.astype(np.float32), self.sample_rate, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=1000 * self.window / self.sample_rate)
        return self._interpolate_f0(self._resize_f0(stonemask(x, self.sample_rate, t, f0), p_len))[0]
    
    def get_f0_yin(self, x, p_len, mode="yin"):
        from librosa import yin, pyin

        return self._interpolate_f0(self._resize_f0(yin(x.astype(np.float32), sr=self.sample_rate, fmin=self.f0_min, fmax=self.f0_max, hop_length=self.hop_length) if mode == "yin" else pyin(x.astype(np.float32), fmin=self.f0_min, fmax=self.f0_max, sr=self.sample_rate, hop_length=self.hop_length)[0], p_len))[0]