File size: 12,679 Bytes
e4d8df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import sys
import time
import yt_dlp
import shutil
import librosa
import logging
import argparse
import warnings
import logging.handlers

from soundfile import read, write
from distutils.util import strtobool

sys.path.append(os.getcwd())

from main.configs.config import Config
from main.library.algorithm.separator import Separator
from main.library.utils import process_audio, merge_audio

config = Config()
translations = config.translations
dataset_temp = os.path.join("dataset_temp")
logger = logging.getLogger(__name__)

if logger.hasHandlers(): logger.handlers.clear()
else: 
    console_handler = logging.StreamHandler()
    console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    console_handler.setFormatter(console_formatter)
    console_handler.setLevel(logging.INFO)
    file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "create_dataset.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
    file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    file_handler.setFormatter(file_formatter)
    file_handler.setLevel(logging.DEBUG)
    logger.addHandler(console_handler)
    logger.addHandler(file_handler)
    logger.setLevel(logging.DEBUG)

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument("--input_audio", type=str, required=True)
    parser.add_argument("--output_dataset", type=str, default="./dataset")
    parser.add_argument("--sample_rate", type=int, default=44100)
    parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--clean_strength", type=float, default=0.7)
    parser.add_argument("--separator_reverb", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--kim_vocal_version", type=int, default=2)
    parser.add_argument("--overlap", type=float, default=0.25)
    parser.add_argument("--segments_size", type=int, default=256)
    parser.add_argument("--mdx_hop_length", type=int, default=1024)
    parser.add_argument("--mdx_batch_size", type=int, default=1)
    parser.add_argument("--denoise_mdx", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--skip", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--skip_start_audios", type=str, default="0")
    parser.add_argument("--skip_end_audios", type=str, default="0")

    return parser.parse_args()

def main():
    pid_path = os.path.join("assets", "create_dataset_pid.txt")
    with open(pid_path, "w") as pid_file:
        pid_file.write(str(os.getpid()))

    args = parse_arguments()
    input_audio, output_dataset, sample_rate, clean_dataset, clean_strength, separator_reverb, kim_vocal_version, overlap, segments_size, hop_length, batch_size, denoise_mdx, skip, skip_start_audios, skip_end_audios = args.input_audio, args.output_dataset, args.sample_rate, args.clean_dataset, args.clean_strength, args.separator_reverb, args.kim_vocal_version, args.overlap, args.segments_size, args.mdx_hop_length, args.mdx_batch_size, args.denoise_mdx, args.skip, args.skip_start_audios, args.skip_end_audios
    log_data = {translations['audio_path']: input_audio, translations['output_path']: output_dataset, translations['sr']: sample_rate, translations['clear_dataset']: clean_dataset, translations['dereveb_audio']: separator_reverb, translations['segments_size']: segments_size, translations['overlap']: overlap, "Hop length": hop_length, translations['batch_size']: batch_size, translations['denoise_mdx']: denoise_mdx, translations['skip']: skip}

    if clean_dataset: log_data[translations['clean_strength']] = clean_strength
    if skip:
        log_data[translations['skip_start']] = skip_start_audios
        log_data[translations['skip_end']] = skip_end_audios

    for key, value in log_data.items():
        logger.debug(f"{key}: {value}")

    if kim_vocal_version not in [1, 2]: raise ValueError(translations["version_not_valid"])
    start_time = time.time()

    try:
        paths = []

        if not os.path.exists(dataset_temp): os.makedirs(dataset_temp, exist_ok=True)
        urls = input_audio.replace(", ", ",").split(",")

        for url in urls:
            path = downloader(url, urls.index(url))
            paths.append(path)

        if skip:
            skip_start_audios = skip_start_audios.replace(", ", ",").split(",")
            skip_end_audios = skip_end_audios.replace(", ", ",").split(",")

            if len(skip_start_audios) < len(paths) or len(skip_end_audios) < len(paths): 
                logger.warning(translations["skip<audio"])
                sys.exit(1)
            elif len(skip_start_audios) > len(paths) or len(skip_end_audios) > len(paths): 
                logger.warning(translations["skip>audio"])
                sys.exit(1)
            else:
                for audio, skip_start_audio, skip_end_audio in zip(paths, skip_start_audios, skip_end_audios):
                    skip_start(audio, skip_start_audio)
                    skip_end(audio, skip_end_audio)

        separator_paths = []

        for audio in paths:
            vocals = separator_music_main(audio, dataset_temp, segments_size, overlap, denoise_mdx, kim_vocal_version, hop_length, batch_size, sample_rate)
            if separator_reverb: vocals = separator_reverb_audio(vocals, dataset_temp, segments_size, overlap, denoise_mdx, hop_length, batch_size, sample_rate)
            separator_paths.append(vocals)
        
        paths = separator_paths
        processed_paths = []

        for audio in paths:
            cut_files, time_stamps = process_audio(logger, audio, os.path.dirname(audio))
            processed_paths.append(merge_audio(cut_files, time_stamps, audio, os.path.splitext(audio)[0] + "_processed" + ".wav", "wav"))

        paths = processed_paths

        for audio_path in paths:
            data, sample_rate = read(audio_path)
            data = librosa.to_mono(data.T)
            
            if clean_dataset: 
                from main.tools.noisereduce import reduce_noise
                data = reduce_noise(y=data, prop_decrease=clean_strength, device=config.device)

            write(audio_path, data, sample_rate)
    except Exception as e:
        logger.error(f"{translations['create_dataset_error']}: {e}")

        import traceback
        logger.error(traceback.format_exc())
    finally:
        for audio in paths:
            shutil.move(audio, output_dataset)

        if os.path.exists(dataset_temp): shutil.rmtree(dataset_temp, ignore_errors=True)

    elapsed_time = time.time() - start_time
    if os.path.exists(pid_path): os.remove(pid_path)
    logger.info(translations["create_dataset_success"].format(elapsed_time=f"{elapsed_time:.2f}"))

def downloader(url, name):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")

        ydl_opts = {"format": "bestaudio/best", "outtmpl": os.path.join(dataset_temp, f"{name}"), "postprocessors": [{"key": "FFmpegExtractAudio", "preferredcodec": "wav", "preferredquality": "192"}], "no_warnings": True, "noplaylist": True, "noplaylist": True, "verbose": False}
        logger.info(f"{translations['starting_download']}: {url}...")

        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.extract_info(url)  
            logger.info(f"{translations['download_success']}: {url}")

    return os.path.join(dataset_temp, f"{name}" + ".wav")

def skip_start(input_file, seconds):
    data, sr = read(input_file)
    total_duration = len(data) / sr
    
    if seconds <= 0: logger.warning(translations["=<0"])
    elif seconds >= total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
    else: 
        logger.info(f"{translations['skip_start']}: {input_file}...")
        write(input_file, data[int(seconds * sr):], sr)

        logger.info(translations["skip_start_audio"].format(input_file=input_file))

def skip_end(input_file, seconds):
    data, sr = read(input_file)
    total_duration = len(data) / sr

    if seconds <= 0: logger.warning(translations["=<0"])
    elif seconds > total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
    else: 
        logger.info(f"{translations['skip_end']}: {input_file}...")
        write(input_file, data[:-int(seconds * sr)], sr)

        logger.info(translations["skip_end_audio"].format(input_file=input_file))

def separator_music_main(input, output, segments_size, overlap, denoise, version, hop_length, batch_size, sample_rate):
    if not os.path.exists(input): 
        logger.warning(translations["input_not_valid"])
        return None
    
    if not os.path.exists(output): 
        logger.warning(translations["output_not_valid"])
        return None

    model = f"Kim_Vocal_{version}.onnx"
    output_separator = separator_main(audio_file=input, model_filename=model, output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=batch_size, mdx_hop_length=hop_length, mdx_enable_denoise=denoise, sample_rate=sample_rate)

    for f in output_separator:
        path = os.path.join(output, f)
        if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))

        if '_(Instrumental)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
        elif '_(Vocals)_' in f:
            rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
            os.rename(path, rename_file)

    return rename_file

def separator_reverb_audio(input, output, segments_size, overlap, denoise, hop_length, batch_size, sample_rate):
    if not os.path.exists(input): 
        logger.warning(translations["input_not_valid"])
        return None
    
    if not os.path.exists(output): 
        logger.warning(translations["output_not_valid"])
        return None

    logger.info(f"{translations['dereverb']}: {input}...")
    output_dereverb = separator_main(audio_file=input, model_filename="Reverb_HQ_By_FoxJoy.onnx", output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=hop_length, mdx_hop_length=batch_size, mdx_enable_denoise=denoise, sample_rate=sample_rate)

    for f in output_dereverb:
        path = os.path.join(output, f)
        if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))

        if '_(Reverb)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
        elif '_(No Reverb)_' in f:
            rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
            os.rename(path, rename_file)    

    logger.info(f"{translations['dereverb_success']}: {rename_file}")
    return rename_file

def separator_main(audio_file=None, model_filename="Kim_Vocal_1.onnx", output_format="wav", output_dir=".", mdx_segment_size=256, mdx_overlap=0.25, mdx_batch_size=1, mdx_hop_length=1024, mdx_enable_denoise=True, sample_rate=44100):
    try:
        separator = Separator(logger=logger, log_formatter=file_formatter, log_level=logging.INFO, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=sample_rate, mdx_params={"hop_length": mdx_hop_length, "segment_size": mdx_segment_size, "overlap": mdx_overlap, "batch_size": mdx_batch_size, "enable_denoise": mdx_enable_denoise})
        separator.load_model(model_filename=model_filename)
        return separator.separate(audio_file)
    except:
        logger.debug(translations["default_setting"])
        separator = Separator(logger=logger, log_formatter=file_formatter, log_level=logging.INFO, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": mdx_enable_denoise})
        separator.load_model(model_filename=model_filename)
        return separator.separate(audio_file)

if __name__ == "__main__": main()