File size: 12,679 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import sys
import time
import yt_dlp
import shutil
import librosa
import logging
import argparse
import warnings
import logging.handlers
from soundfile import read, write
from distutils.util import strtobool
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.algorithm.separator import Separator
from main.library.utils import process_audio, merge_audio
config = Config()
translations = config.translations
dataset_temp = os.path.join("dataset_temp")
logger = logging.getLogger(__name__)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "create_dataset.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--input_audio", type=str, required=True)
parser.add_argument("--output_dataset", type=str, default="./dataset")
parser.add_argument("--sample_rate", type=int, default=44100)
parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--separator_reverb", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--kim_vocal_version", type=int, default=2)
parser.add_argument("--overlap", type=float, default=0.25)
parser.add_argument("--segments_size", type=int, default=256)
parser.add_argument("--mdx_hop_length", type=int, default=1024)
parser.add_argument("--mdx_batch_size", type=int, default=1)
parser.add_argument("--denoise_mdx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip_start_audios", type=str, default="0")
parser.add_argument("--skip_end_audios", type=str, default="0")
return parser.parse_args()
def main():
pid_path = os.path.join("assets", "create_dataset_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
args = parse_arguments()
input_audio, output_dataset, sample_rate, clean_dataset, clean_strength, separator_reverb, kim_vocal_version, overlap, segments_size, hop_length, batch_size, denoise_mdx, skip, skip_start_audios, skip_end_audios = args.input_audio, args.output_dataset, args.sample_rate, args.clean_dataset, args.clean_strength, args.separator_reverb, args.kim_vocal_version, args.overlap, args.segments_size, args.mdx_hop_length, args.mdx_batch_size, args.denoise_mdx, args.skip, args.skip_start_audios, args.skip_end_audios
log_data = {translations['audio_path']: input_audio, translations['output_path']: output_dataset, translations['sr']: sample_rate, translations['clear_dataset']: clean_dataset, translations['dereveb_audio']: separator_reverb, translations['segments_size']: segments_size, translations['overlap']: overlap, "Hop length": hop_length, translations['batch_size']: batch_size, translations['denoise_mdx']: denoise_mdx, translations['skip']: skip}
if clean_dataset: log_data[translations['clean_strength']] = clean_strength
if skip:
log_data[translations['skip_start']] = skip_start_audios
log_data[translations['skip_end']] = skip_end_audios
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
if kim_vocal_version not in [1, 2]: raise ValueError(translations["version_not_valid"])
start_time = time.time()
try:
paths = []
if not os.path.exists(dataset_temp): os.makedirs(dataset_temp, exist_ok=True)
urls = input_audio.replace(", ", ",").split(",")
for url in urls:
path = downloader(url, urls.index(url))
paths.append(path)
if skip:
skip_start_audios = skip_start_audios.replace(", ", ",").split(",")
skip_end_audios = skip_end_audios.replace(", ", ",").split(",")
if len(skip_start_audios) < len(paths) or len(skip_end_audios) < len(paths):
logger.warning(translations["skip<audio"])
sys.exit(1)
elif len(skip_start_audios) > len(paths) or len(skip_end_audios) > len(paths):
logger.warning(translations["skip>audio"])
sys.exit(1)
else:
for audio, skip_start_audio, skip_end_audio in zip(paths, skip_start_audios, skip_end_audios):
skip_start(audio, skip_start_audio)
skip_end(audio, skip_end_audio)
separator_paths = []
for audio in paths:
vocals = separator_music_main(audio, dataset_temp, segments_size, overlap, denoise_mdx, kim_vocal_version, hop_length, batch_size, sample_rate)
if separator_reverb: vocals = separator_reverb_audio(vocals, dataset_temp, segments_size, overlap, denoise_mdx, hop_length, batch_size, sample_rate)
separator_paths.append(vocals)
paths = separator_paths
processed_paths = []
for audio in paths:
cut_files, time_stamps = process_audio(logger, audio, os.path.dirname(audio))
processed_paths.append(merge_audio(cut_files, time_stamps, audio, os.path.splitext(audio)[0] + "_processed" + ".wav", "wav"))
paths = processed_paths
for audio_path in paths:
data, sample_rate = read(audio_path)
data = librosa.to_mono(data.T)
if clean_dataset:
from main.tools.noisereduce import reduce_noise
data = reduce_noise(y=data, prop_decrease=clean_strength, device=config.device)
write(audio_path, data, sample_rate)
except Exception as e:
logger.error(f"{translations['create_dataset_error']}: {e}")
import traceback
logger.error(traceback.format_exc())
finally:
for audio in paths:
shutil.move(audio, output_dataset)
if os.path.exists(dataset_temp): shutil.rmtree(dataset_temp, ignore_errors=True)
elapsed_time = time.time() - start_time
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(translations["create_dataset_success"].format(elapsed_time=f"{elapsed_time:.2f}"))
def downloader(url, name):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
ydl_opts = {"format": "bestaudio/best", "outtmpl": os.path.join(dataset_temp, f"{name}"), "postprocessors": [{"key": "FFmpegExtractAudio", "preferredcodec": "wav", "preferredquality": "192"}], "no_warnings": True, "noplaylist": True, "noplaylist": True, "verbose": False}
logger.info(f"{translations['starting_download']}: {url}...")
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.extract_info(url)
logger.info(f"{translations['download_success']}: {url}")
return os.path.join(dataset_temp, f"{name}" + ".wav")
def skip_start(input_file, seconds):
data, sr = read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds >= total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_start']}: {input_file}...")
write(input_file, data[int(seconds * sr):], sr)
logger.info(translations["skip_start_audio"].format(input_file=input_file))
def skip_end(input_file, seconds):
data, sr = read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds > total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_end']}: {input_file}...")
write(input_file, data[:-int(seconds * sr)], sr)
logger.info(translations["skip_end_audio"].format(input_file=input_file))
def separator_music_main(input, output, segments_size, overlap, denoise, version, hop_length, batch_size, sample_rate):
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
model = f"Kim_Vocal_{version}.onnx"
output_separator = separator_main(audio_file=input, model_filename=model, output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=batch_size, mdx_hop_length=hop_length, mdx_enable_denoise=denoise, sample_rate=sample_rate)
for f in output_separator:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Instrumental)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(Vocals)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
return rename_file
def separator_reverb_audio(input, output, segments_size, overlap, denoise, hop_length, batch_size, sample_rate):
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
logger.info(f"{translations['dereverb']}: {input}...")
output_dereverb = separator_main(audio_file=input, model_filename="Reverb_HQ_By_FoxJoy.onnx", output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=hop_length, mdx_hop_length=batch_size, mdx_enable_denoise=denoise, sample_rate=sample_rate)
for f in output_dereverb:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Reverb)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(No Reverb)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
logger.info(f"{translations['dereverb_success']}: {rename_file}")
return rename_file
def separator_main(audio_file=None, model_filename="Kim_Vocal_1.onnx", output_format="wav", output_dir=".", mdx_segment_size=256, mdx_overlap=0.25, mdx_batch_size=1, mdx_hop_length=1024, mdx_enable_denoise=True, sample_rate=44100):
try:
separator = Separator(logger=logger, log_formatter=file_formatter, log_level=logging.INFO, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=sample_rate, mdx_params={"hop_length": mdx_hop_length, "segment_size": mdx_segment_size, "overlap": mdx_overlap, "batch_size": mdx_batch_size, "enable_denoise": mdx_enable_denoise})
separator.load_model(model_filename=model_filename)
return separator.separate(audio_file)
except:
logger.debug(translations["default_setting"])
separator = Separator(logger=logger, log_formatter=file_formatter, log_level=logging.INFO, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": mdx_enable_denoise})
separator.load_model(model_filename=model_filename)
return separator.separate(audio_file)
if __name__ == "__main__": main() |