File size: 23,785 Bytes
e4d8df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import re
import sys
import time
import tqdm
import torch
import shutil
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers

import numpy as np
import soundfile as sf
import torch.nn.functional as F

from random import shuffle
from distutils.util import strtobool
from fairseq import checkpoint_utils
from concurrent.futures import ThreadPoolExecutor, as_completed

sys.path.append(os.getcwd())

from main.configs.config import Config
from main.library.utils import check_predictors, check_embedders, load_audio

logger = logging.getLogger(__name__)
translations = Config().translations
logger.propagate = False

warnings.filterwarnings("ignore")
for l in ["torch", "faiss", "httpx", "fairseq", "httpcore", "faiss.loader", "numba.core", "urllib3"]:
    logging.getLogger(l).setLevel(logging.ERROR)

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name", type=str, required=True)
    parser.add_argument("--rvc_version", type=str, default="v2")
    parser.add_argument("--f0_method", type=str, default="rmvpe")
    parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
    parser.add_argument("--hop_length", type=int, default=128)
    parser.add_argument("--cpu_cores", type=int, default=2)
    parser.add_argument("--gpu", type=str, default="-")
    parser.add_argument("--sample_rate", type=int, required=True)
    parser.add_argument("--embedder_model", type=str, default="contentvec_base.pt")
    parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--embedders_onnx", type=lambda x: bool(strtobool(x)), default=False)

    return parser.parse_args()

def generate_config(rvc_version, sample_rate, model_path):
    config_save_path = os.path.join(model_path, "config.json")
    if not os.path.exists(config_save_path): shutil.copy(os.path.join("main", "configs", rvc_version, f"{sample_rate}.json"), config_save_path)

def generate_filelist(pitch_guidance, model_path, rvc_version, sample_rate):
    gt_wavs_dir, feature_dir = os.path.join(model_path, "sliced_audios"), os.path.join(model_path, f"{rvc_version}_extracted")
    f0_dir, f0nsf_dir = None, None
    
    if pitch_guidance: f0_dir, f0nsf_dir = os.path.join(model_path, "f0"), os.path.join(model_path, "f0_voiced")

    gt_wavs_files, feature_files = set(name.split(".")[0] for name in os.listdir(gt_wavs_dir)), set(name.split(".")[0] for name in os.listdir(feature_dir))
    names = gt_wavs_files & feature_files & set(name.split(".")[0] for name in os.listdir(f0_dir)) & set(name.split(".")[0] for name in os.listdir(f0nsf_dir)) if pitch_guidance else gt_wavs_files & feature_files

    options = []
    mute_base_path = os.path.join("assets", "logs", "mute")

    for name in names:
        options.append(f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|{f0_dir}/{name}.wav.npy|{f0nsf_dir}/{name}.wav.npy|0" if pitch_guidance else f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|0")

    mute_audio_path, mute_feature_path = os.path.join(mute_base_path, "sliced_audios", f"mute{sample_rate}.wav"), os.path.join(mute_base_path, f"{rvc_version}_extracted", "mute.npy")

    for _ in range(2):
        options.append(f"{mute_audio_path}|{mute_feature_path}|{os.path.join(mute_base_path, 'f0', 'mute.wav.npy')}|{os.path.join(mute_base_path, 'f0_voiced', 'mute.wav.npy')}|0" if pitch_guidance else f"{mute_audio_path}|{mute_feature_path}|0")

    shuffle(options)
    with open(os.path.join(model_path, "filelist.txt"), "w") as f:
        f.write("\n".join(options))

def setup_paths(exp_dir, version = None):
    wav_path = os.path.join(exp_dir, "sliced_audios_16k")

    if version:
        out_path = os.path.join(exp_dir, f"{version}_extracted")
        os.makedirs(out_path, exist_ok=True)
        return wav_path, out_path
    else:
        output_root1, output_root2 = os.path.join(exp_dir, "f0"), os.path.join(exp_dir, "f0_voiced")
        os.makedirs(output_root1, exist_ok=True); os.makedirs(output_root2, exist_ok=True)
        return wav_path, output_root1, output_root2

def read_wave(wav_path, normalize = False):
    wav, sr = sf.read(wav_path)
    assert sr == 16000, translations["sr_not_16000"]

    feats = torch.from_numpy(wav).float()

    if feats.dim() == 2: feats = feats.mean(-1)
    feats = feats.view(1, -1)

    if normalize: feats = F.layer_norm(feats, feats.shape)
    return feats

def get_device(gpu_index):
    try:
        index = int(gpu_index)
        if index < torch.cuda.device_count(): return f"cuda:{index}"
        else: logger.warning(translations["gpu_not_valid"])
    except ValueError:
        logger.warning(translations["gpu_not_valid"])
        return "cpu"

def get_providers():
    ort_providers = onnxruntime.get_available_providers()

    if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
    elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
    else: providers = ["CPUExecutionProvider"]

    return providers

class FeatureInput:
    def __init__(self, sample_rate=16000, hop_size=160, device="cpu"):
        self.fs = sample_rate
        self.hop = hop_size
        self.f0_bin = 256
        self.f0_max = 1100.0
        self.f0_min = 50.0
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
        self.device = device
    
    def compute_f0_hybrid(self, methods_str, np_arr, hop_length, f0_onnx):
        methods_str = re.search("hybrid\[(.+)\]", methods_str)
        if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]

        f0_computation_stack, resampled_stack = [], []
        logger.debug(translations["hybrid_methods"].format(methods=methods))

        for method in methods:
            f0 = None
            f0_methods = {"pm": lambda: self.get_pm(np_arr), "diow": lambda: self.get_pyworld_wrapper(np_arr, "dio"), "dio": lambda: self.get_pyworld(np_arr, "dio"), "mangio-crepe-full": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "full", onnx=f0_onnx), "mangio-crepe-large": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "large", onnx=f0_onnx), "mangio-crepe-medium": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "medium", onnx=f0_onnx), "mangio-crepe-small": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "small", onnx=f0_onnx), "mangio-crepe-tiny": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "tiny", onnx=f0_onnx), "crepe-full": lambda: self.get_crepe(np_arr, "full", onnx=f0_onnx), "crepe-large": lambda: self.get_crepe(np_arr, "large", onnx=f0_onnx), "crepe-medium": lambda: self.get_crepe(np_arr, "medium", onnx=f0_onnx), "crepe-small": lambda: self.get_crepe(np_arr, "small", onnx=f0_onnx), "crepe-tiny": lambda: self.get_crepe(np_arr, "tiny", onnx=f0_onnx), "fcpe": lambda: self.get_fcpe(np_arr, int(hop_length), onnx=f0_onnx), "fcpe-legacy": lambda: self.get_fcpe(np_arr, int(hop_length), legacy=True, onnx=f0_onnx), "rmvpe": lambda: self.get_rmvpe(np_arr, onnx=f0_onnx), "rmvpe-legacy": lambda: self.get_rmvpe(np_arr, legacy=True, onnx=f0_onnx), "harvestw": lambda: self.get_pyworld_wrapper(np_arr, "harvest"), "harvest": lambda: self.get_pyworld(np_arr, "harvest"), "swipe": lambda: self.get_swipe(np_arr), "yin": lambda: self.get_yin(np_arr, int(hop_length), mode="yin"), "pyin": lambda: self.get_yin(np_arr, int(hop_length), mode="pyin")}
            f0 = f0_methods.get(method, lambda: ValueError(translations["method_not_valid"]))()
            f0_computation_stack.append(f0) 

        for f0 in f0_computation_stack:
            resampled_stack.append(np.interp(np.linspace(0, len(f0), (np_arr.size // self.hop)), np.arange(len(f0)), f0))

        return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)

    def compute_f0(self, np_arr, f0_method, hop_length, f0_onnx=False):
        f0_methods = {"pm": lambda: self.get_pm(np_arr), "diow": lambda: self.get_pyworld_wrapper(np_arr, "dio"), "dio": lambda: self.get_pyworld(np_arr, "dio"), "mangio-crepe-full": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "full", onnx=f0_onnx), "mangio-crepe-large": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "large", onnx=f0_onnx), "mangio-crepe-medium": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "medium", onnx=f0_onnx), "mangio-crepe-small": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "small", onnx=f0_onnx), "mangio-crepe-tiny": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "tiny", onnx=f0_onnx), "crepe-full": lambda: self.get_crepe(np_arr, "full", onnx=f0_onnx), "crepe-large": lambda: self.get_crepe(np_arr, "large", onnx=f0_onnx), "crepe-medium": lambda: self.get_crepe(np_arr, "medium", onnx=f0_onnx), "crepe-small": lambda: self.get_crepe(np_arr, "small", onnx=f0_onnx), "crepe-tiny": lambda: self.get_crepe(np_arr, "tiny", onnx=f0_onnx), "fcpe": lambda: self.get_fcpe(np_arr, int(hop_length), onnx=f0_onnx), "fcpe-legacy": lambda: self.get_fcpe(np_arr, int(hop_length), legacy=True, onnx=f0_onnx), "rmvpe": lambda: self.get_rmvpe(np_arr, onnx=f0_onnx), "rmvpe-legacy": lambda: self.get_rmvpe(np_arr, legacy=True, onnx=f0_onnx), "harvestw": lambda: self.get_pyworld_wrapper(np_arr, "harvest"), "harvest": lambda: self.get_pyworld(np_arr, "harvest"), "swipe": lambda: self.get_swipe(np_arr), "yin": lambda: self.get_yin(np_arr, int(hop_length), mode="yin"), "pyin": lambda: self.get_yin(np_arr, int(hop_length), mode="pyin")}
        return self.compute_f0_hybrid(f0_method, np_arr, int(hop_length), f0_onnx) if "hybrid" in f0_method else f0_methods.get(f0_method, lambda: ValueError(translations["method_not_valid"]))()

    def get_pm(self, x):
        import parselmouth

        f0 = (parselmouth.Sound(x, self.fs).to_pitch_ac(time_step=(160 / 16000 * 1000) / 1000, voicing_threshold=0.6, pitch_floor=50, pitch_ceiling=1100).selected_array["frequency"])
        pad_size = ((x.size // self.hop) - len(f0) + 1) // 2

        if pad_size > 0 or (x.size // self.hop) - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, (x.size // self.hop) - len(f0) - pad_size]], mode="constant")
        return f0
    
    def get_mangio_crepe(self, x, hop_length, model="full", onnx=False):
        from main.library.predictors.CREPE import predict

        audio = torch.from_numpy(x.astype(np.float32)).to(self.device)
        audio /= torch.quantile(torch.abs(audio), 0.999)
        audio = audio.unsqueeze(0)

        source = predict(audio, self.fs, hop_length, self.f0_min, self.f0_max, model=model, batch_size=hop_length * 2, device=self.device, pad=True, providers=get_providers(), onnx=onnx).squeeze(0).cpu().float().numpy()
        source[source < 0.001] = np.nan

        return np.nan_to_num(np.interp(np.arange(0, len(source) * (x.size // self.hop), len(source)) / (x.size // self.hop), np.arange(0, len(source)), source))
    
    def get_crepe(self, x, model="full", onnx=False):
        from main.library.predictors.CREPE import predict, mean, median

        f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.fs, 160, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=get_providers(), onnx=onnx)
        f0, pd = mean(f0, 3), median(pd, 3)
        f0[pd < 0.1] = 0

        return f0[0].cpu().numpy()
    
    def get_fcpe(self, x, hop_length, legacy=False, onnx=False):
        from main.library.predictors.FCPE import FCPE

        model_fcpe = FCPE(os.path.join("assets", "models", "predictors", ("fcpe_legacy" if legacy else"fcpe") + (".onnx" if onnx else ".pt")), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.fs, threshold=0.03, providers=get_providers(), onnx=onnx, legacy=legacy)
        f0 = model_fcpe.compute_f0(x, p_len=(x.size // self.hop))

        del model_fcpe
        return f0
    
    def get_rmvpe(self, x, legacy=False, onnx=False):
        from main.library.predictors.RMVPE import RMVPE

        rmvpe_model = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if onnx else ".pt")), device=self.device, onnx=onnx, providers=get_providers())
        f0 = rmvpe_model.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else rmvpe_model.infer_from_audio(x, thred=0.03)

        del rmvpe_model
        return f0
    
    def get_pyworld_wrapper(self, x, model="harvest"):
        from main.library.predictors.WORLD_WRAPPER import PYWORLD

        pw = PYWORLD()
        x = x.astype(np.double)

        if model == "harvest":  f0, t = pw.harvest(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
        elif model == "dio": f0, t = pw.dio(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
        else: raise ValueError(translations["method_not_valid"])

        return pw.stonemask(x, self.fs, t, f0)
    
    def get_pyworld(self, x, model="harvest"):
        from main.library.predictors.pyworld import dio, harvest, stonemask

        x = x.astype(np.double)

        if model == "harvest":  f0, t = harvest.harvest(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
        elif model == "dio": f0, t = dio.dio(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
        else: raise ValueError(translations["method_not_valid"])

        return stonemask.stonemask(x, self.fs, t, f0)
    
    def get_swipe(self, x):
        from main.library.predictors.SWIPE import swipe

        f0, _ = swipe(x.astype(np.double), self.fs, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=1000 * self.hop / self.fs, device=self.device)
        return f0
    
    def get_yin(self, x, hop_length, mode="yin"):
        import librosa

        if mode == "yin":
            source = np.array(librosa.yin(x.astype(np.float32), sr=self.fs, fmin=self.f0_min, fmax=self.f0_max, hop_length=hop_length))
            source[source < 0.001] = np.nan
        else:
            f0, _, _ = librosa.pyin(x.astype(np.float32), fmin=self.f0_min, fmax=self.f0_max, sr=self.fs, hop_length=hop_length)

            source = np.array(f0)
            source[source < 0.001] = np.nan

        return np.nan_to_num(np.interp(np.arange(0, len(source) * (x.size // self.hop), len(source)) / (x.size // self.hop), np.arange(0, len(source)), source))
    
    def coarse_f0(self, f0):
        return np.rint(np.clip(((1127 * np.log(1 + f0 / 700)) - self.f0_mel_min) * (self.f0_bin - 2) / (self.f0_mel_max - self.f0_mel_min) + 1, 1, self.f0_bin - 1)).astype(int)

    def process_file(self, file_info, f0_method, hop_length, f0_onnx):
        inp_path, opt_path1, opt_path2, np_arr = file_info
        if os.path.exists(opt_path1 + ".npy") and os.path.exists(opt_path2 + ".npy"): return

        try:
            feature_pit = self.compute_f0(np_arr, f0_method, hop_length, f0_onnx)
            if isinstance(feature_pit, tuple): feature_pit = feature_pit[0]

            np.save(opt_path2, feature_pit, allow_pickle=False)
            np.save(opt_path1, self.coarse_f0(feature_pit), allow_pickle=False)
        except Exception as e:
            raise RuntimeError(f"{translations['extract_file_error']} {inp_path}: {e}")

    def process_files(self, files, f0_method, hop_length, f0_onnx, device, pbar):
        self.device = device
        for file_info in files:
            self.process_file(file_info, f0_method, hop_length, f0_onnx)
            pbar.update()

def run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus, f0_onnx):
    input_root, *output_roots = setup_paths(exp_dir)
    output_root1, output_root2 = output_roots if len(output_roots) == 2 else (output_roots[0], None)

    paths = [(os.path.join(input_root, name), os.path.join(output_root1, name) if output_root1 else None, os.path.join(output_root2, name) if output_root2 else None, load_audio(logger, os.path.join(input_root, name), 16000)) for name in sorted(os.listdir(input_root)) if "spec" not in name]
    logger.info(translations["extract_f0_method"].format(num_processes=num_processes, f0_method=f0_method))

    start_time = time.time()
    gpus = gpus.split("-")

    process_partials = []
    devices = get_device(gpu) if gpu != "" else "cpu"

    pbar = tqdm.tqdm(total=len(paths), ncols=100, unit="p")
    for idx, gpu in enumerate(gpus):
        feature_input = FeatureInput(device=devices)
        process_partials.append((feature_input, paths[idx::len(gpus)]))

    with ThreadPoolExecutor(max_workers=num_processes) as executor:
        for future in as_completed([executor.submit(FeatureInput.process_files, feature_input, part_paths, f0_method, hop_length, f0_onnx, devices, pbar) for feature_input, part_paths in process_partials]):
            pbar.update(1)
            logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
            future.result()

    pbar.close()
    logger.info(translations["extract_f0_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))

def extract_features(model, feats, version):
    return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)

def process_file_embedding(file, wav_path, out_path, model, device, version, saved_cfg, embed_suffix):
    out_file_path = os.path.join(out_path, file.replace("wav", "npy"))
    if os.path.exists(out_file_path): return

    feats = read_wave(os.path.join(wav_path, file), normalize=saved_cfg.task.normalize if saved_cfg else False).to(device).float()
    if embed_suffix == ".pt": inputs = {"source": feats, "padding_mask": torch.BoolTensor(feats.shape).fill_(False).to(device), "output_layer": 9 if version == "v1" else 12}

    with torch.no_grad():
        if embed_suffix == ".pt":
            model = model.to(device).float().eval()
            logits = model.extract_features(**inputs)
            feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
        else: feats = extract_features(model, feats, version).to(device)

    feats = feats.squeeze(0).float().cpu().numpy()

    if not np.isnan(feats).any(): np.save(out_file_path, feats, allow_pickle=False)
    else: logger.warning(f"{file} {translations['NaN']}")

def run_embedding_extraction(exp_dir, version, gpus, embedder_model):
    wav_path, out_path = setup_paths(exp_dir, version)
    logger.info(translations["start_extract_hubert"])

    start_time = time.time()
    embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
    if not os.path.exists(embedder_model_path) and not embedder_model.endswith((".pt", ".onnx")): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")  
    
    try:
        if embedder_model.endswith(".pt"):
            models, saved_cfg, _ = checkpoint_utils.load_model_ensemble_and_task([embedder_model_path], suffix="")

            models = models[0]
            embed_suffix = ".pt"
        else:
            sess_options = onnxruntime.SessionOptions()
            sess_options.log_severity_level = 3

            models = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=get_providers())
            saved_cfg, embed_suffix = None, ".onnx"
    except Exception as e:
        raise ImportError(translations["read_model_error"].format(e=e))

    devices = [(get_device(gpu) for gpu in (gpus.split("-"))) if gpus != "-" else "cpu"]
    paths = sorted([file for file in os.listdir(wav_path) if file.endswith(".wav")])

    if not paths:
        logger.warning(translations["not_found_audio_file"])
        sys.exit(1)

    pbar = tqdm.tqdm(total=len(paths) * len(devices), ncols=100, unit="p")
    for task in [(file, wav_path, out_path, models, device, version, saved_cfg, embed_suffix) for file in paths for device in devices]:
        try:
            process_file_embedding(*task)
        except Exception as e:
            raise RuntimeError(f"{translations['process_error']} {task[0]}: {e}")
        
        pbar.update(1)
        logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))

    pbar.close()
    logger.info(translations["extract_hubert_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))

if __name__ == "__main__":
    args = parse_arguments()
    exp_dir = os.path.join("assets", "logs", args.model_name)
    f0_method, hop_length, num_processes, gpus, version, pitch_guidance, sample_rate, embedder_model, f0_onnx, embedders_onnx = args.f0_method, args.hop_length, args.cpu_cores, args.gpu, args.rvc_version, args.pitch_guidance, args.sample_rate, args.embedder_model, args.f0_onnx, args.embedders_onnx
    check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_onnx)
    embedder_model += ".onnx" if embedders_onnx else ".pt"

    if logger.hasHandlers(): logger.handlers.clear()
    else:
        console_handler = logging.StreamHandler()
        console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
        console_handler.setFormatter(console_formatter)
        console_handler.setLevel(logging.INFO)
        file_handler = logging.handlers.RotatingFileHandler(os.path.join(exp_dir, "extract.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
        file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
        file_handler.setFormatter(file_formatter)
        file_handler.setLevel(logging.DEBUG)
        logger.addHandler(console_handler)
        logger.addHandler(file_handler)
        logger.setLevel(logging.DEBUG)

    log_data = {translations['modelname']: args.model_name, translations['export_process']: exp_dir, translations['f0_method']: f0_method, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, "Gpu": gpus, "Hop length": hop_length, translations['training_version']: version, translations['extract_f0']: pitch_guidance, translations['hubert_model']: embedder_model, translations["f0_onnx_mode"]: f0_onnx, translations["embed_onnx"]: embedders_onnx}
    for key, value in log_data.items():
        logger.debug(f"{key}: {value}")

    pid_path = os.path.join(exp_dir, "extract_pid.txt")
    with open(pid_path, "w") as pid_file:
        pid_file.write(str(os.getpid()))

    try:
        run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus, f0_onnx)
        run_embedding_extraction(exp_dir, version, gpus, embedder_model)
        generate_config(version, sample_rate, exp_dir)
        generate_filelist(pitch_guidance, exp_dir, version, sample_rate)
    except Exception as e:
        logger.error(f"{translations['extract_error']}: {e}")
        import traceback
        logger.debug(traceback.format_exc())

    if os.path.exists(pid_path): os.remove(pid_path)
    logger.info(f"{translations['extract_success']} {args.model_name}.")