File size: 23,785 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import os
import re
import sys
import time
import tqdm
import torch
import shutil
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers
import numpy as np
import soundfile as sf
import torch.nn.functional as F
from random import shuffle
from distutils.util import strtobool
from fairseq import checkpoint_utils
from concurrent.futures import ThreadPoolExecutor, as_completed
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.utils import check_predictors, check_embedders, load_audio
logger = logging.getLogger(__name__)
translations = Config().translations
logger.propagate = False
warnings.filterwarnings("ignore")
for l in ["torch", "faiss", "httpx", "fairseq", "httpcore", "faiss.loader", "numba.core", "urllib3"]:
logging.getLogger(l).setLevel(logging.ERROR)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--rvc_version", type=str, default="v2")
parser.add_argument("--f0_method", type=str, default="rmvpe")
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--hop_length", type=int, default=128)
parser.add_argument("--cpu_cores", type=int, default=2)
parser.add_argument("--gpu", type=str, default="-")
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--embedder_model", type=str, default="contentvec_base.pt")
parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--embedders_onnx", type=lambda x: bool(strtobool(x)), default=False)
return parser.parse_args()
def generate_config(rvc_version, sample_rate, model_path):
config_save_path = os.path.join(model_path, "config.json")
if not os.path.exists(config_save_path): shutil.copy(os.path.join("main", "configs", rvc_version, f"{sample_rate}.json"), config_save_path)
def generate_filelist(pitch_guidance, model_path, rvc_version, sample_rate):
gt_wavs_dir, feature_dir = os.path.join(model_path, "sliced_audios"), os.path.join(model_path, f"{rvc_version}_extracted")
f0_dir, f0nsf_dir = None, None
if pitch_guidance: f0_dir, f0nsf_dir = os.path.join(model_path, "f0"), os.path.join(model_path, "f0_voiced")
gt_wavs_files, feature_files = set(name.split(".")[0] for name in os.listdir(gt_wavs_dir)), set(name.split(".")[0] for name in os.listdir(feature_dir))
names = gt_wavs_files & feature_files & set(name.split(".")[0] for name in os.listdir(f0_dir)) & set(name.split(".")[0] for name in os.listdir(f0nsf_dir)) if pitch_guidance else gt_wavs_files & feature_files
options = []
mute_base_path = os.path.join("assets", "logs", "mute")
for name in names:
options.append(f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|{f0_dir}/{name}.wav.npy|{f0nsf_dir}/{name}.wav.npy|0" if pitch_guidance else f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|0")
mute_audio_path, mute_feature_path = os.path.join(mute_base_path, "sliced_audios", f"mute{sample_rate}.wav"), os.path.join(mute_base_path, f"{rvc_version}_extracted", "mute.npy")
for _ in range(2):
options.append(f"{mute_audio_path}|{mute_feature_path}|{os.path.join(mute_base_path, 'f0', 'mute.wav.npy')}|{os.path.join(mute_base_path, 'f0_voiced', 'mute.wav.npy')}|0" if pitch_guidance else f"{mute_audio_path}|{mute_feature_path}|0")
shuffle(options)
with open(os.path.join(model_path, "filelist.txt"), "w") as f:
f.write("\n".join(options))
def setup_paths(exp_dir, version = None):
wav_path = os.path.join(exp_dir, "sliced_audios_16k")
if version:
out_path = os.path.join(exp_dir, f"{version}_extracted")
os.makedirs(out_path, exist_ok=True)
return wav_path, out_path
else:
output_root1, output_root2 = os.path.join(exp_dir, "f0"), os.path.join(exp_dir, "f0_voiced")
os.makedirs(output_root1, exist_ok=True); os.makedirs(output_root2, exist_ok=True)
return wav_path, output_root1, output_root2
def read_wave(wav_path, normalize = False):
wav, sr = sf.read(wav_path)
assert sr == 16000, translations["sr_not_16000"]
feats = torch.from_numpy(wav).float()
if feats.dim() == 2: feats = feats.mean(-1)
feats = feats.view(1, -1)
if normalize: feats = F.layer_norm(feats, feats.shape)
return feats
def get_device(gpu_index):
try:
index = int(gpu_index)
if index < torch.cuda.device_count(): return f"cuda:{index}"
else: logger.warning(translations["gpu_not_valid"])
except ValueError:
logger.warning(translations["gpu_not_valid"])
return "cpu"
def get_providers():
ort_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
else: providers = ["CPUExecutionProvider"]
return providers
class FeatureInput:
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"):
self.fs = sample_rate
self.hop = hop_size
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = device
def compute_f0_hybrid(self, methods_str, np_arr, hop_length, f0_onnx):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack, resampled_stack = [], []
logger.debug(translations["hybrid_methods"].format(methods=methods))
for method in methods:
f0 = None
f0_methods = {"pm": lambda: self.get_pm(np_arr), "diow": lambda: self.get_pyworld_wrapper(np_arr, "dio"), "dio": lambda: self.get_pyworld(np_arr, "dio"), "mangio-crepe-full": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "full", onnx=f0_onnx), "mangio-crepe-large": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "large", onnx=f0_onnx), "mangio-crepe-medium": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "medium", onnx=f0_onnx), "mangio-crepe-small": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "small", onnx=f0_onnx), "mangio-crepe-tiny": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "tiny", onnx=f0_onnx), "crepe-full": lambda: self.get_crepe(np_arr, "full", onnx=f0_onnx), "crepe-large": lambda: self.get_crepe(np_arr, "large", onnx=f0_onnx), "crepe-medium": lambda: self.get_crepe(np_arr, "medium", onnx=f0_onnx), "crepe-small": lambda: self.get_crepe(np_arr, "small", onnx=f0_onnx), "crepe-tiny": lambda: self.get_crepe(np_arr, "tiny", onnx=f0_onnx), "fcpe": lambda: self.get_fcpe(np_arr, int(hop_length), onnx=f0_onnx), "fcpe-legacy": lambda: self.get_fcpe(np_arr, int(hop_length), legacy=True, onnx=f0_onnx), "rmvpe": lambda: self.get_rmvpe(np_arr, onnx=f0_onnx), "rmvpe-legacy": lambda: self.get_rmvpe(np_arr, legacy=True, onnx=f0_onnx), "harvestw": lambda: self.get_pyworld_wrapper(np_arr, "harvest"), "harvest": lambda: self.get_pyworld(np_arr, "harvest"), "swipe": lambda: self.get_swipe(np_arr), "yin": lambda: self.get_yin(np_arr, int(hop_length), mode="yin"), "pyin": lambda: self.get_yin(np_arr, int(hop_length), mode="pyin")}
f0 = f0_methods.get(method, lambda: ValueError(translations["method_not_valid"]))()
f0_computation_stack.append(f0)
for f0 in f0_computation_stack:
resampled_stack.append(np.interp(np.linspace(0, len(f0), (np_arr.size // self.hop)), np.arange(len(f0)), f0))
return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
def compute_f0(self, np_arr, f0_method, hop_length, f0_onnx=False):
f0_methods = {"pm": lambda: self.get_pm(np_arr), "diow": lambda: self.get_pyworld_wrapper(np_arr, "dio"), "dio": lambda: self.get_pyworld(np_arr, "dio"), "mangio-crepe-full": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "full", onnx=f0_onnx), "mangio-crepe-large": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "large", onnx=f0_onnx), "mangio-crepe-medium": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "medium", onnx=f0_onnx), "mangio-crepe-small": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "small", onnx=f0_onnx), "mangio-crepe-tiny": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "tiny", onnx=f0_onnx), "crepe-full": lambda: self.get_crepe(np_arr, "full", onnx=f0_onnx), "crepe-large": lambda: self.get_crepe(np_arr, "large", onnx=f0_onnx), "crepe-medium": lambda: self.get_crepe(np_arr, "medium", onnx=f0_onnx), "crepe-small": lambda: self.get_crepe(np_arr, "small", onnx=f0_onnx), "crepe-tiny": lambda: self.get_crepe(np_arr, "tiny", onnx=f0_onnx), "fcpe": lambda: self.get_fcpe(np_arr, int(hop_length), onnx=f0_onnx), "fcpe-legacy": lambda: self.get_fcpe(np_arr, int(hop_length), legacy=True, onnx=f0_onnx), "rmvpe": lambda: self.get_rmvpe(np_arr, onnx=f0_onnx), "rmvpe-legacy": lambda: self.get_rmvpe(np_arr, legacy=True, onnx=f0_onnx), "harvestw": lambda: self.get_pyworld_wrapper(np_arr, "harvest"), "harvest": lambda: self.get_pyworld(np_arr, "harvest"), "swipe": lambda: self.get_swipe(np_arr), "yin": lambda: self.get_yin(np_arr, int(hop_length), mode="yin"), "pyin": lambda: self.get_yin(np_arr, int(hop_length), mode="pyin")}
return self.compute_f0_hybrid(f0_method, np_arr, int(hop_length), f0_onnx) if "hybrid" in f0_method else f0_methods.get(f0_method, lambda: ValueError(translations["method_not_valid"]))()
def get_pm(self, x):
import parselmouth
f0 = (parselmouth.Sound(x, self.fs).to_pitch_ac(time_step=(160 / 16000 * 1000) / 1000, voicing_threshold=0.6, pitch_floor=50, pitch_ceiling=1100).selected_array["frequency"])
pad_size = ((x.size // self.hop) - len(f0) + 1) // 2
if pad_size > 0 or (x.size // self.hop) - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, (x.size // self.hop) - len(f0) - pad_size]], mode="constant")
return f0
def get_mangio_crepe(self, x, hop_length, model="full", onnx=False):
from main.library.predictors.CREPE import predict
audio = torch.from_numpy(x.astype(np.float32)).to(self.device)
audio /= torch.quantile(torch.abs(audio), 0.999)
audio = audio.unsqueeze(0)
source = predict(audio, self.fs, hop_length, self.f0_min, self.f0_max, model=model, batch_size=hop_length * 2, device=self.device, pad=True, providers=get_providers(), onnx=onnx).squeeze(0).cpu().float().numpy()
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * (x.size // self.hop), len(source)) / (x.size // self.hop), np.arange(0, len(source)), source))
def get_crepe(self, x, model="full", onnx=False):
from main.library.predictors.CREPE import predict, mean, median
f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.fs, 160, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=get_providers(), onnx=onnx)
f0, pd = mean(f0, 3), median(pd, 3)
f0[pd < 0.1] = 0
return f0[0].cpu().numpy()
def get_fcpe(self, x, hop_length, legacy=False, onnx=False):
from main.library.predictors.FCPE import FCPE
model_fcpe = FCPE(os.path.join("assets", "models", "predictors", ("fcpe_legacy" if legacy else"fcpe") + (".onnx" if onnx else ".pt")), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.fs, threshold=0.03, providers=get_providers(), onnx=onnx, legacy=legacy)
f0 = model_fcpe.compute_f0(x, p_len=(x.size // self.hop))
del model_fcpe
return f0
def get_rmvpe(self, x, legacy=False, onnx=False):
from main.library.predictors.RMVPE import RMVPE
rmvpe_model = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if onnx else ".pt")), device=self.device, onnx=onnx, providers=get_providers())
f0 = rmvpe_model.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else rmvpe_model.infer_from_audio(x, thred=0.03)
del rmvpe_model
return f0
def get_pyworld_wrapper(self, x, model="harvest"):
from main.library.predictors.WORLD_WRAPPER import PYWORLD
pw = PYWORLD()
x = x.astype(np.double)
if model == "harvest": f0, t = pw.harvest(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
elif model == "dio": f0, t = pw.dio(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
else: raise ValueError(translations["method_not_valid"])
return pw.stonemask(x, self.fs, t, f0)
def get_pyworld(self, x, model="harvest"):
from main.library.predictors.pyworld import dio, harvest, stonemask
x = x.astype(np.double)
if model == "harvest": f0, t = harvest.harvest(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
elif model == "dio": f0, t = dio.dio(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
else: raise ValueError(translations["method_not_valid"])
return stonemask.stonemask(x, self.fs, t, f0)
def get_swipe(self, x):
from main.library.predictors.SWIPE import swipe
f0, _ = swipe(x.astype(np.double), self.fs, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=1000 * self.hop / self.fs, device=self.device)
return f0
def get_yin(self, x, hop_length, mode="yin"):
import librosa
if mode == "yin":
source = np.array(librosa.yin(x.astype(np.float32), sr=self.fs, fmin=self.f0_min, fmax=self.f0_max, hop_length=hop_length))
source[source < 0.001] = np.nan
else:
f0, _, _ = librosa.pyin(x.astype(np.float32), fmin=self.f0_min, fmax=self.f0_max, sr=self.fs, hop_length=hop_length)
source = np.array(f0)
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * (x.size // self.hop), len(source)) / (x.size // self.hop), np.arange(0, len(source)), source))
def coarse_f0(self, f0):
return np.rint(np.clip(((1127 * np.log(1 + f0 / 700)) - self.f0_mel_min) * (self.f0_bin - 2) / (self.f0_mel_max - self.f0_mel_min) + 1, 1, self.f0_bin - 1)).astype(int)
def process_file(self, file_info, f0_method, hop_length, f0_onnx):
inp_path, opt_path1, opt_path2, np_arr = file_info
if os.path.exists(opt_path1 + ".npy") and os.path.exists(opt_path2 + ".npy"): return
try:
feature_pit = self.compute_f0(np_arr, f0_method, hop_length, f0_onnx)
if isinstance(feature_pit, tuple): feature_pit = feature_pit[0]
np.save(opt_path2, feature_pit, allow_pickle=False)
np.save(opt_path1, self.coarse_f0(feature_pit), allow_pickle=False)
except Exception as e:
raise RuntimeError(f"{translations['extract_file_error']} {inp_path}: {e}")
def process_files(self, files, f0_method, hop_length, f0_onnx, device, pbar):
self.device = device
for file_info in files:
self.process_file(file_info, f0_method, hop_length, f0_onnx)
pbar.update()
def run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus, f0_onnx):
input_root, *output_roots = setup_paths(exp_dir)
output_root1, output_root2 = output_roots if len(output_roots) == 2 else (output_roots[0], None)
paths = [(os.path.join(input_root, name), os.path.join(output_root1, name) if output_root1 else None, os.path.join(output_root2, name) if output_root2 else None, load_audio(logger, os.path.join(input_root, name), 16000)) for name in sorted(os.listdir(input_root)) if "spec" not in name]
logger.info(translations["extract_f0_method"].format(num_processes=num_processes, f0_method=f0_method))
start_time = time.time()
gpus = gpus.split("-")
process_partials = []
devices = get_device(gpu) if gpu != "" else "cpu"
pbar = tqdm.tqdm(total=len(paths), ncols=100, unit="p")
for idx, gpu in enumerate(gpus):
feature_input = FeatureInput(device=devices)
process_partials.append((feature_input, paths[idx::len(gpus)]))
with ThreadPoolExecutor(max_workers=num_processes) as executor:
for future in as_completed([executor.submit(FeatureInput.process_files, feature_input, part_paths, f0_method, hop_length, f0_onnx, devices, pbar) for feature_input, part_paths in process_partials]):
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
future.result()
pbar.close()
logger.info(translations["extract_f0_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))
def extract_features(model, feats, version):
return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)
def process_file_embedding(file, wav_path, out_path, model, device, version, saved_cfg, embed_suffix):
out_file_path = os.path.join(out_path, file.replace("wav", "npy"))
if os.path.exists(out_file_path): return
feats = read_wave(os.path.join(wav_path, file), normalize=saved_cfg.task.normalize if saved_cfg else False).to(device).float()
if embed_suffix == ".pt": inputs = {"source": feats, "padding_mask": torch.BoolTensor(feats.shape).fill_(False).to(device), "output_layer": 9 if version == "v1" else 12}
with torch.no_grad():
if embed_suffix == ".pt":
model = model.to(device).float().eval()
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
else: feats = extract_features(model, feats, version).to(device)
feats = feats.squeeze(0).float().cpu().numpy()
if not np.isnan(feats).any(): np.save(out_file_path, feats, allow_pickle=False)
else: logger.warning(f"{file} {translations['NaN']}")
def run_embedding_extraction(exp_dir, version, gpus, embedder_model):
wav_path, out_path = setup_paths(exp_dir, version)
logger.info(translations["start_extract_hubert"])
start_time = time.time()
embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
if not os.path.exists(embedder_model_path) and not embedder_model.endswith((".pt", ".onnx")): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
try:
if embedder_model.endswith(".pt"):
models, saved_cfg, _ = checkpoint_utils.load_model_ensemble_and_task([embedder_model_path], suffix="")
models = models[0]
embed_suffix = ".pt"
else:
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
models = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=get_providers())
saved_cfg, embed_suffix = None, ".onnx"
except Exception as e:
raise ImportError(translations["read_model_error"].format(e=e))
devices = [(get_device(gpu) for gpu in (gpus.split("-"))) if gpus != "-" else "cpu"]
paths = sorted([file for file in os.listdir(wav_path) if file.endswith(".wav")])
if not paths:
logger.warning(translations["not_found_audio_file"])
sys.exit(1)
pbar = tqdm.tqdm(total=len(paths) * len(devices), ncols=100, unit="p")
for task in [(file, wav_path, out_path, models, device, version, saved_cfg, embed_suffix) for file in paths for device in devices]:
try:
process_file_embedding(*task)
except Exception as e:
raise RuntimeError(f"{translations['process_error']} {task[0]}: {e}")
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
pbar.close()
logger.info(translations["extract_hubert_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))
if __name__ == "__main__":
args = parse_arguments()
exp_dir = os.path.join("assets", "logs", args.model_name)
f0_method, hop_length, num_processes, gpus, version, pitch_guidance, sample_rate, embedder_model, f0_onnx, embedders_onnx = args.f0_method, args.hop_length, args.cpu_cores, args.gpu, args.rvc_version, args.pitch_guidance, args.sample_rate, args.embedder_model, args.f0_onnx, args.embedders_onnx
check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_onnx)
embedder_model += ".onnx" if embedders_onnx else ".pt"
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join(exp_dir, "extract.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
log_data = {translations['modelname']: args.model_name, translations['export_process']: exp_dir, translations['f0_method']: f0_method, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, "Gpu": gpus, "Hop length": hop_length, translations['training_version']: version, translations['extract_f0']: pitch_guidance, translations['hubert_model']: embedder_model, translations["f0_onnx_mode"]: f0_onnx, translations["embed_onnx"]: embedders_onnx}
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
pid_path = os.path.join(exp_dir, "extract_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
try:
run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus, f0_onnx)
run_embedding_extraction(exp_dir, version, gpus, embedder_model)
generate_config(version, sample_rate, exp_dir)
generate_filelist(pitch_guidance, exp_dir, version, sample_rate)
except Exception as e:
logger.error(f"{translations['extract_error']}: {e}")
import traceback
logger.debug(traceback.format_exc())
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(f"{translations['extract_success']} {args.model_name}.") |