File size: 53,527 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
import os
import sys
import glob
import json
import torch
import hashlib
import logging
import argparse
import datetime
import warnings
import logging.handlers
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
import torch.distributed as dist
import torch.utils.data as tdata
import torch.multiprocessing as mp
from tqdm import tqdm
from collections import OrderedDict
from random import randint, shuffle
from torch.utils.checkpoint import checkpoint
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from time import time as ttime
from torch.nn import functional as F
from distutils.util import strtobool
from librosa.filters import mel as librosa_mel_fn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils.parametrizations import spectral_norm, weight_norm
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.algorithm.residuals import LRELU_SLOPE
from main.library.algorithm.synthesizers import Synthesizer
from main.library.algorithm.commons import get_padding, slice_segments, clip_grad_value
MATPLOTLIB_FLAG = False
translations = Config().translations
warnings.filterwarnings("ignore")
logging.getLogger("torch").setLevel(logging.ERROR)
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
self[k] = HParams(**v) if isinstance(v, dict) else v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return self.__dict__[key]
def __setitem__(self, key, value):
self.__dict__[key] = value
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return repr(self.__dict__)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--rvc_version", type=str, default="v2")
parser.add_argument("--save_every_epoch", type=int, required=True)
parser.add_argument("--save_only_latest", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--save_every_weights", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--total_epoch", type=int, default=300)
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--gpu", type=str, default="0")
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--g_pretrained_path", type=str, default="")
parser.add_argument("--d_pretrained_path", type=str, default="")
parser.add_argument("--overtraining_detector", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--overtraining_threshold", type=int, default=50)
parser.add_argument("--cleanup", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--cache_data_in_gpu", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--model_author", type=str)
parser.add_argument("--vocoder", type=str, default="Default")
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
return parser.parse_args()
args = parse_arguments()
model_name, save_every_epoch, total_epoch, pretrainG, pretrainD, version, gpus, batch_size, sample_rate, pitch_guidance, save_only_latest, save_every_weights, cache_data_in_gpu, overtraining_detector, overtraining_threshold, cleanup, model_author, vocoder, checkpointing = args.model_name, args.save_every_epoch, args.total_epoch, args.g_pretrained_path, args.d_pretrained_path, args.rvc_version, args.gpu, args.batch_size, args.sample_rate, args.pitch_guidance, args.save_only_latest, args.save_every_weights, args.cache_data_in_gpu, args.overtraining_detector, args.overtraining_threshold, args.cleanup, args.model_author, args.vocoder, args.checkpointing
experiment_dir = os.path.join("assets", "logs", model_name)
training_file_path = os.path.join(experiment_dir, "training_data.json")
config_save_path = os.path.join(experiment_dir, "config.json")
os.environ["CUDA_VISIBLE_DEVICES"] = gpus.replace("-", ",")
n_gpus = len(gpus.split("-"))
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
global_step, last_loss_gen_all, overtrain_save_epoch = 0, 0, 0
loss_gen_history, smoothed_loss_gen_history, loss_disc_history, smoothed_loss_disc_history = [], [], [], []
with open(config_save_path, "r") as f:
config = json.load(f)
config = HParams(**config)
config.data.training_files = os.path.join(experiment_dir, "filelist.txt")
logger = logging.getLogger(__name__)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join(experiment_dir, "train.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_handler.setFormatter(logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
log_data = {translations['modelname']: model_name, translations["save_every_epoch"]: save_every_epoch, translations["total_e"]: total_epoch, translations["dorg"].format(pretrainG=pretrainG, pretrainD=pretrainD): "", translations['training_version']: version, "Gpu": gpus, translations['batch_size']: batch_size, translations['pretrain_sr']: sample_rate, translations['training_f0']: pitch_guidance, translations['save_only_latest']: save_only_latest, translations['save_every_weights']: save_every_weights, translations['cache_in_gpu']: cache_data_in_gpu, translations['overtraining_detector']: overtraining_detector, translations['threshold']: overtraining_threshold, translations['cleanup_training']: cleanup, translations['memory_efficient_training']: checkpointing}
if model_author: log_data[translations["model_author"].format(model_author=model_author)] = ""
if vocoder != "Default": log_data[translations['vocoder']] = vocoder
for key, value in log_data.items():
logger.debug(f"{key}: {value}" if value != "" else f"{key} {value}")
def main():
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch, model_author, vocoder, checkpointing
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
if torch.cuda.is_available(): device, n_gpus = torch.device("cuda"), torch.cuda.device_count()
elif torch.backends.mps.is_available(): device, n_gpus = torch.device("mps"), 1
else: device, n_gpus = torch.device("cpu"), 1
def start():
children = []
pid_data = {"process_pids": []}
with open(config_save_path, "r") as pid_file:
try:
pid_data.update(json.load(pid_file))
except json.JSONDecodeError:
pass
with open(config_save_path, "w") as pid_file:
for i in range(n_gpus):
subproc = mp.Process(target=run, args=(i, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, total_epoch, save_every_weights, config, device, model_author, vocoder, checkpointing))
children.append(subproc)
subproc.start()
pid_data["process_pids"].append(subproc.pid)
json.dump(pid_data, pid_file, indent=4)
for i in range(n_gpus):
children[i].join()
def load_from_json(file_path):
if os.path.exists(file_path):
with open(file_path, "r") as f:
data = json.load(f)
return (data.get("loss_disc_history", []), data.get("smoothed_loss_disc_history", []), data.get("loss_gen_history", []), data.get("smoothed_loss_gen_history", []))
return [], [], [], []
def continue_overtrain_detector(training_file_path):
if overtraining_detector and os.path.exists(training_file_path): (loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) = load_from_json(training_file_path)
n_gpus = torch.cuda.device_count()
if not torch.cuda.is_available() and torch.backends.mps.is_available(): n_gpus = 1
if n_gpus < 1:
logger.warning(translations["not_gpu"])
n_gpus = 1
if cleanup:
for root, dirs, files in os.walk(experiment_dir, topdown=False):
for name in files:
file_path = os.path.join(root, name)
_, file_extension = os.path.splitext(name)
if (file_extension == ".0" or (name.startswith("D_") and file_extension == ".pth") or (name.startswith("G_") and file_extension == ".pth") or (file_extension == ".index")): os.remove(file_path)
for name in dirs:
if name == "eval":
folder_path = os.path.join(root, name)
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item)
if os.path.isfile(item_path): os.remove(item_path)
os.rmdir(folder_path)
continue_overtrain_detector(training_file_path)
start()
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
plt.switch_backend("Agg")
MATPLOTLIB_FLAG = True
fig, ax = plt.subplots(figsize=(10, 2))
plt.colorbar(ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none"), ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
plt.close(fig)
return np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(fig.canvas.get_width_height()[::-1] + (3,))
def verify_checkpoint_shapes(checkpoint_path, model):
checkpoint = torch.load(checkpoint_path, map_location="cpu")
checkpoint_state_dict = checkpoint["model"]
try:
model_state_dict = model.module.load_state_dict(checkpoint_state_dict) if hasattr(model, "module") else model.load_state_dict(checkpoint_state_dict)
except RuntimeError:
logger.warning(translations["checkpointing_err"])
sys.exit(1)
else: del checkpoint, checkpoint_state_dict, model_state_dict
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sample_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats="HWC")
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sample_rate)
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
assert os.path.isfile(checkpoint_path), translations["not_found_checkpoint"].format(checkpoint_path=checkpoint_path)
checkpoint_dict = replace_keys_in_dict(replace_keys_in_dict(torch.load(checkpoint_path, map_location="cpu"), ".weight_v", ".parametrizations.weight.original1"), ".weight_g", ".parametrizations.weight.original0")
new_state_dict = {k: checkpoint_dict["model"].get(k, v) for k, v in (model.module.state_dict() if hasattr(model, "module") else model.state_dict()).items()}
if hasattr(model, "module"): model.module.load_state_dict(new_state_dict, strict=False)
else: model.load_state_dict(new_state_dict, strict=False)
if optimizer and load_opt == 1: optimizer.load_state_dict(checkpoint_dict.get("optimizer", {}))
logger.debug(translations["save_checkpoint"].format(checkpoint_path=checkpoint_path, checkpoint_dict=checkpoint_dict['iteration']))
return (model, optimizer, checkpoint_dict.get("learning_rate", 0), checkpoint_dict["iteration"])
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
state_dict = (model.module.state_dict() if hasattr(model, "module") else model.state_dict())
torch.save(replace_keys_in_dict(replace_keys_in_dict({"model": state_dict, "iteration": iteration, "optimizer": optimizer.state_dict(), "learning_rate": learning_rate}, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), checkpoint_path)
logger.info(translations["save_model"].format(checkpoint_path=checkpoint_path, iteration=iteration))
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
checkpoints = sorted(glob.glob(os.path.join(dir_path, regex)), key=lambda f: int("".join(filter(str.isdigit, f))))
return checkpoints[-1] if checkpoints else None
def load_wav_to_torch(full_path):
data, sample_rate = sf.read(full_path, dtype='float32')
return torch.FloatTensor(data.astype(np.float32)), sample_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding="utf-8") as f:
return [line.strip().split(split) for line in f]
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl.float().detach() - gl.float()))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses, g_losses = [], []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
dr = dr.float()
dg = dg.float()
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg.float()) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
return torch.sum(kl * z_mask) / torch.sum(z_mask)
class TextAudioLoaderMultiNSFsid(tdata.Dataset):
def __init__(self, hparams):
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files)
self.max_wav_value = hparams.max_wav_value
self.sample_rate = hparams.sample_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sample_rate = hparams.sample_rate
self.min_text_len = getattr(hparams, "min_text_len", 1)
self.max_text_len = getattr(hparams, "max_text_len", 5000)
self._filter()
def _filter(self):
audiopaths_and_text_new, lengths = [], []
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
self.audiopaths_and_text = audiopaths_and_text_new
self.lengths = lengths
def get_sid(self, sid):
try:
sid = torch.LongTensor([int(sid)])
except ValueError as e:
logger.error(translations["sid_error"].format(sid=sid, e=e))
sid = torch.LongTensor([0])
return sid
def get_audio_text_pair(self, audiopath_and_text):
phone, pitch, pitchf = self.get_labels(audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3])
spec, wav = self.get_audio(audiopath_and_text[0])
dv = self.get_sid(audiopath_and_text[4])
len_phone = phone.size()[0]
len_spec = spec.size()[-1]
if len_phone != len_spec:
len_min = min(len_phone, len_spec)
len_wav = len_min * self.hop_length
spec, wav, phone = spec[:, :len_min], wav[:, :len_wav], phone[:len_min, :]
pitch, pitchf = pitch[:len_min], pitchf[:len_min]
return (spec, wav, phone, pitch, pitchf, dv)
def get_labels(self, phone, pitch, pitchf):
phone = np.repeat(np.load(phone), 2, axis=0)
n_num = min(phone.shape[0], 900)
return torch.FloatTensor(phone[:n_num, :]), torch.LongTensor(np.load(pitch)[:n_num]), torch.FloatTensor(np.load(pitchf)[:n_num])
def get_audio(self, filename):
audio, sample_rate = load_wav_to_torch(filename)
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate))
audio_norm = audio.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
try:
spec = torch.load(spec_filename)
except Exception as e:
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e))
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
else:
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
return spec, audio_norm
def __getitem__(self, index):
return self.get_audio_text_pair(self.audiopaths_and_text[index])
def __len__(self):
return len(self.audiopaths_and_text)
class TextAudioCollateMultiNSFsid:
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True)
spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch))
spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch]))
spec_padded.zero_()
wave_padded.zero_()
max_phone_len = max([x[2].size(0) for x in batch])
phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
pitch_padded, pitchf_padded = torch.LongTensor(len(batch), max_phone_len), torch.FloatTensor(len(batch), max_phone_len)
phone_padded.zero_()
pitch_padded.zero_()
pitchf_padded.zero_()
sid = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
spec = row[0]
spec_padded[i, :, : spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wave = row[1]
wave_padded[i, :, : wave.size(1)] = wave
wave_lengths[i] = wave.size(1)
phone = row[2]
phone_padded[i, : phone.size(0), :] = phone
phone_lengths[i] = phone.size(0)
pitch = row[3]
pitch_padded[i, : pitch.size(0)] = pitch
pitchf = row[4]
pitchf_padded[i, : pitchf.size(0)] = pitchf
sid[i] = row[5]
return (phone_padded, phone_lengths, pitch_padded, pitchf_padded, spec_padded, spec_lengths, wave_padded, wave_lengths, sid)
class TextAudioLoader(tdata.Dataset):
def __init__(self, hparams):
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files)
self.max_wav_value = hparams.max_wav_value
self.sample_rate = hparams.sample_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sample_rate = hparams.sample_rate
self.min_text_len = getattr(hparams, "min_text_len", 1)
self.max_text_len = getattr(hparams, "max_text_len", 5000)
self._filter()
def _filter(self):
audiopaths_and_text_new, lengths = [], []
for entry in self.audiopaths_and_text:
if len(entry) >= 3:
audiopath, text, dv = entry[:3]
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
audiopaths_and_text_new.append([audiopath, text, dv])
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
self.audiopaths_and_text = audiopaths_and_text_new
self.lengths = lengths
def get_sid(self, sid):
try:
sid = torch.LongTensor([int(sid)])
except ValueError as e:
logger.error(translations["sid_error"].format(sid=sid, e=e))
sid = torch.LongTensor([0])
return sid
def get_audio_text_pair(self, audiopath_and_text):
phone = self.get_labels(audiopath_and_text[1])
spec, wav = self.get_audio(audiopath_and_text[0])
dv = self.get_sid(audiopath_and_text[2])
len_phone = phone.size()[0]
len_spec = spec.size()[-1]
if len_phone != len_spec:
len_min = min(len_phone, len_spec)
len_wav = len_min * self.hop_length
spec = spec[:, :len_min]
wav = wav[:, :len_wav]
phone = phone[:len_min, :]
return (spec, wav, phone, dv)
def get_labels(self, phone):
phone = np.repeat(np.load(phone), 2, axis=0)
return torch.FloatTensor(phone[:min(phone.shape[0], 900), :])
def get_audio(self, filename):
audio, sample_rate = load_wav_to_torch(filename)
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate))
audio_norm = audio.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
try:
spec = torch.load(spec_filename)
except Exception as e:
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e))
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
else:
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
return spec, audio_norm
def __getitem__(self, index):
return self.get_audio_text_pair(self.audiopaths_and_text[index])
def __len__(self):
return len(self.audiopaths_and_text)
class TextAudioCollate:
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True)
spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch))
spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch]))
spec_padded.zero_()
wave_padded.zero_()
max_phone_len = max([x[2].size(0) for x in batch])
phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
phone_padded.zero_()
sid = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
spec = row[0]
spec_padded[i, :, : spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wave = row[1]
wave_padded[i, :, : wave.size(1)] = wave
wave_lengths[i] = wave.size(1)
phone = row[2]
phone_padded[i, : phone.size(0), :] = phone
phone_lengths[i] = phone.size(0)
sid[i] = row[3]
return (phone_padded, phone_lengths, spec_padded, spec_lengths, wave_padded, wave_lengths, sid)
class DistributedBucketSampler(tdata.distributed.DistributedSampler):
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
idx_bucket = self._bisect(self.lengths[i])
if idx_bucket != -1: buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, -1, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
num_samples_per_bucket.append(len_bucket + ((total_batch_size - (len_bucket % total_batch_size)) % total_batch_size))
return buckets, num_samples_per_bucket
def __iter__(self):
g = torch.Generator()
g.manual_seed(self.epoch)
indices, batches = [], []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
rem = self.num_samples_per_bucket[i] - len_bucket
ids_bucket = (ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)])[self.rank :: self.num_replicas]
for j in range(len(ids_bucket) // self.batch_size):
batches.append([bucket[idx] for idx in ids_bucket[j * self.batch_size : (j + 1) * self.batch_size]])
if self.shuffle: batches = [batches[i] for i in torch.randperm(len(batches), generator=g).tolist()]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None: hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid
elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid)
else: return self._bisect(x, mid + 1, hi)
else: return -1
def __len__(self):
return self.num_samples // self.batch_size
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, version, use_spectral_norm=False, checkpointing=False):
super(MultiPeriodDiscriminator, self).__init__()
self.checkpointing = checkpointing
periods = ([2, 3, 5, 7, 11, 17] if version == "v1" else [2, 3, 5, 7, 11, 17, 23, 37])
self.discriminators = torch.nn.ModuleList([DiscriminatorS(use_spectral_norm=use_spectral_norm, checkpointing=checkpointing)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm, checkpointing=checkpointing) for p in periods])
def forward(self, y, y_hat):
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
for d in self.discriminators:
if self.training and self.checkpointing:
def forward_discriminator(d, y, y_hat):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
return y_d_r, fmap_r, y_d_g, fmap_g
y_d_r, fmap_r, y_d_g, fmap_g = checkpoint(forward_discriminator, d, y, y_hat, use_reentrant=False)
else:
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r); fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g); fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False, checkpointing=False):
super(DiscriminatorS, self).__init__()
self.checkpointing = checkpointing
norm_f = spectral_norm if use_spectral_norm else weight_norm
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2))])
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1))
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE)
def forward(self, x):
fmap = []
for conv in self.convs:
x = checkpoint(self.lrelu, checkpoint(conv, x, use_reentrant = False), use_reentrant = False) if self.training and self.checkpointing else self.lrelu(conv(x))
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return torch.flatten(x, 1, -1), fmap
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, checkpointing=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.checkpointing = checkpointing
norm_f = spectral_norm if use_spectral_norm else weight_norm
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv2d(in_ch, out_ch, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))) for in_ch, out_ch in zip([1, 32, 128, 512, 1024], [32, 128, 512, 1024, 1024])])
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE)
def forward(self, x):
fmap = []
b, c, t = x.shape
if t % self.period != 0: x = torch.nn.functional.pad(x, (0, (self.period - (t % self.period))), "reflect")
x = x.view(b, c, -1, self.period)
for conv in self.convs:
x = checkpoint(self.lrelu, checkpoint(conv, x, use_reentrant = False), use_reentrant = False) if self.training and self.checkpointing else self.lrelu(conv(x))
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return torch.flatten(x, 1, -1), fmap
class EpochRecorder:
def __init__(self):
self.last_time = ttime()
def record(self):
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
return translations["time_or_speed_training"].format(current_time=datetime.datetime.now().strftime("%H:%M:%S"), elapsed_time_str=str(datetime.timedelta(seconds=int(round(elapsed_time, 1)))))
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
return dynamic_range_compression_torch(magnitudes)
def spectral_de_normalize_torch(magnitudes):
return dynamic_range_decompression_torch(magnitudes)
mel_basis, hann_window = {}, {}
def spectrogram_torch(y, n_fft, hop_size, win_size, center=False):
global hann_window
wnsize_dtype_device = str(win_size) + "_" + str(y.dtype) + "_" + str(y.device)
if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
spec = torch.stft(torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect").squeeze(1), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True)
return torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)
def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax):
global mel_basis
fmax_dtype_device = str(fmax) + "_" + str(spec.dtype) + "_" + str(spec.device)
if fmax_dtype_device not in mel_basis: mel_basis[fmax_dtype_device] = torch.from_numpy(librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)).to(dtype=spec.dtype, device=spec.device)
return spectral_normalize_torch(torch.matmul(mel_basis[fmax_dtype_device], spec))
def mel_spectrogram_torch(y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False):
return spec_to_mel_torch(spectrogram_torch(y, n_fft, hop_size, win_size, center), n_fft, num_mels, sample_rate, fmin, fmax)
def replace_keys_in_dict(d, old_key_part, new_key_part):
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {}
for key, value in d.items():
updated_dict[(key.replace(old_key_part, new_key_part) if isinstance(key, str) else key)] = (replace_keys_in_dict(value, old_key_part, new_key_part) if isinstance(value, dict) else value)
return updated_dict
def extract_model(ckpt, sr, pitch_guidance, name, model_path, epoch, step, version, hps, model_author, vocoder):
try:
logger.info(translations["savemodel"].format(model_dir=model_path, epoch=epoch, step=step))
os.makedirs(os.path.dirname(model_path), exist_ok=True)
opt = OrderedDict(weight={key: value.half() for key, value in ckpt.items() if "enc_q" not in key})
opt["config"] = [hps.data.filter_length // 2 + 1, 32, hps.model.inter_channels, hps.model.hidden_channels, hps.model.filter_channels, hps.model.n_heads, hps.model.n_layers, hps.model.kernel_size, hps.model.p_dropout, hps.model.resblock, hps.model.resblock_kernel_sizes, hps.model.resblock_dilation_sizes, hps.model.upsample_rates, hps.model.upsample_initial_channel, hps.model.upsample_kernel_sizes, hps.model.spk_embed_dim, hps.model.gin_channels, hps.data.sample_rate]
opt["epoch"] = f"{epoch}epoch"
opt["step"] = step
opt["sr"] = sr
opt["f0"] = int(pitch_guidance)
opt["version"] = version
opt["creation_date"] = datetime.datetime.now().isoformat()
opt["model_hash"] = hashlib.sha256(f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}".encode()).hexdigest()
opt["model_name"] = name
opt["author"] = model_author
opt["vocoder"] = vocoder
torch.save(replace_keys_in_dict(replace_keys_in_dict(opt, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), model_path)
except Exception as e:
logger.error(f"{translations['extract_model_error']}: {e}")
def run(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, model_author, vocoder, checkpointing):
global global_step
if rank == 0: writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval"))
else: writer_eval = None
dist.init_process_group(backend="gloo", init_method="env://", world_size=n_gpus, rank=rank)
torch.manual_seed(config.train.seed)
if torch.cuda.is_available(): torch.cuda.set_device(rank)
train_dataset = TextAudioLoaderMultiNSFsid(config.data)
train_loader = tdata.DataLoader(train_dataset, num_workers=4, shuffle=False, pin_memory=True, collate_fn=TextAudioCollateMultiNSFsid(), batch_sampler=DistributedBucketSampler(train_dataset, batch_size * n_gpus, [100, 200, 300, 400, 500, 600, 700, 800, 900], num_replicas=n_gpus, rank=rank, shuffle=True), persistent_workers=True, prefetch_factor=8)
net_g, net_d = Synthesizer(config.data.filter_length // 2 + 1, config.train.segment_size // config.data.hop_length, **config.model, use_f0=pitch_guidance, sr=sample_rate, vocoder=vocoder, checkpointing=checkpointing), MultiPeriodDiscriminator(version, config.model.use_spectral_norm, checkpointing=checkpointing)
net_g, net_d = (net_g.cuda(rank), net_d.cuda(rank)) if torch.cuda.is_available() else (net_g.to(device), net_d.to(device))
optim_g, optim_d = torch.optim.AdamW(net_g.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps), torch.optim.AdamW(net_d.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps)
net_g, net_d = (DDP(net_g, device_ids=[rank]), DDP(net_d, device_ids=[rank])) if torch.cuda.is_available() else (DDP(net_g), DDP(net_d))
try:
logger.info(translations["start_training"])
_, _, _, epoch_str = load_checkpoint((os.path.join(experiment_dir, "D_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "D_*.pth")), net_d, optim_d)
_, _, _, epoch_str = load_checkpoint((os.path.join(experiment_dir, "G_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "G_*.pth")), net_g, optim_g)
epoch_str += 1
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str, global_step = 1, 0
if pretrainG != "" and pretrainG != "None":
if rank == 0:
verify_checkpoint_shapes(pretrainG, net_g)
logger.info(translations["import_pretrain"].format(dg="G", pretrain=pretrainG))
if hasattr(net_g, "module"): net_g.module.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"])
else: net_g.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"])
else: logger.warning(translations["not_using_pretrain"].format(dg="G"))
if pretrainD != "" and pretrainD != "None":
if rank == 0:
verify_checkpoint_shapes(pretrainD, net_d)
logger.info(translations["import_pretrain"].format(dg="D", pretrain=pretrainD))
if hasattr(net_d, "module"): net_d.module.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"])
else: net_d.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"])
else: logger.warning(translations["not_using_pretrain"].format(dg="D"))
scheduler_g, scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2), torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2)
optim_d.step(); optim_g.step()
scaler = GradScaler(enabled=False)
cache = []
for info in train_loader:
phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info
reference = (phone.cuda(rank, non_blocking=True), phone_lengths.cuda(rank, non_blocking=True), (pitch.cuda(rank, non_blocking=True) if pitch_guidance else None), (pitchf.cuda(rank, non_blocking=True) if pitch_guidance else None), sid.cuda(rank, non_blocking=True)) if device.type == "cuda" else (phone.to(device), phone_lengths.to(device), (pitch.to(device) if pitch_guidance else None), (pitchf.to(device) if pitch_guidance else None), sid.to(device))
break
for epoch in range(epoch_str, total_epoch + 1):
train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, train_loader, writer_eval, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author, vocoder)
scheduler_g.step(); scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, train_loader, writer, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author, vocoder):
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc
if epoch == 1:
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
last_loss_gen_all, consecutive_increases_gen, consecutive_increases_disc = 0.0, 0, 0
net_g, net_d = nets
optim_g, optim_d = optims
train_loader.batch_sampler.set_epoch(epoch)
net_g.train(); net_d.train()
if device.type == "cuda" and cache_data_in_gpu:
data_iterator = cache
if cache == []:
for batch_idx, info in enumerate(train_loader):
cache.append((batch_idx, [tensor.cuda(rank, non_blocking=True) for tensor in info]))
else: shuffle(cache)
else: data_iterator = enumerate(train_loader)
epoch_recorder = EpochRecorder()
with tqdm(total=len(train_loader), leave=False) as pbar:
for batch_idx, info in data_iterator:
if device.type == "cuda" and not cache_data_in_gpu: info = [tensor.cuda(rank, non_blocking=True) for tensor in info]
elif device.type != "cuda": info = [tensor.to(device) for tensor in info]
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, wave, _, sid = info
pitch = pitch if pitch_guidance else None
pitchf = pitchf if pitch_guidance else None
with autocast(enabled=False):
y_hat, ids_slice, _, z_mask, (_, z_p, m_p, logs_p, _, logs_q) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid)
mel = spec_to_mel_torch(spec, config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.mel_fmin, config.data.mel_fmax)
y_mel = slice_segments(mel, ids_slice, config.train.segment_size // config.data.hop_length, dim=3)
with autocast(enabled=False):
y_hat_mel = mel_spectrogram_torch(y_hat.float().squeeze(1), config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.hop_length, config.data.win_length, config.data.mel_fmin, config.data.mel_fmax)
wave = slice_segments(wave, ids_slice * config.data.hop_length, config.train.segment_size, dim=3)
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
optim_d.zero_grad()
scaler.scale(loss_disc).backward()
scaler.unscale_(optim_d)
grad_norm_d = clip_grad_value(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=False):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
loss_kl = (kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
if loss_gen_all < lowest_value["value"]:
lowest_value["value"] = loss_gen_all
lowest_value["step"] = global_step
lowest_value["epoch"] = epoch
if epoch > lowest_value["epoch"]: logger.warning(translations["training_warning"])
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = clip_grad_value(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0 and global_step % config.train.log_interval == 0:
if loss_mel > 75: loss_mel = 75
if loss_kl > 9: loss_kl = 9
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc, "learning_rate": optim_g.param_groups[0]["lr"], "grad/norm_d": grad_norm_d, "grad/norm_g": grad_norm_g, "loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}
scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)})
scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)})
scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)})
with torch.no_grad():
o, *_ = net_g.module.infer(*reference) if hasattr(net_g, "module") else net_g.infer(*reference)
summarize(writer=writer, global_step=global_step, images={"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy())}, scalars=scalar_dict, audios={f"gen/audio_{global_step:07d}": o[0, :, :]}, audio_sample_rate=config.data.sample_rate)
global_step += 1
pbar.update(1)
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004):
if len(smoothed_loss_history) < threshold + 1: return False
for i in range(-threshold, -1):
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: return True
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: return False
return True
def update_exponential_moving_average(smoothed_loss_history, new_value, smoothing=0.987):
smoothed_value = new_value if not smoothed_loss_history else (smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value)
smoothed_loss_history.append(smoothed_value)
return smoothed_value
def save_to_json(file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history):
with open(file_path, "w") as f:
json.dump({"loss_disc_history": loss_disc_history, "smoothed_loss_disc_history": smoothed_loss_disc_history, "loss_gen_history": loss_gen_history, "smoothed_loss_gen_history": smoothed_loss_gen_history}, f)
model_add, model_del = [], []
done = False
if rank == 0:
if epoch % save_every_epoch == False:
checkpoint_suffix = f"{'latest' if save_only_latest else global_step}.pth"
save_checkpoint(net_g, optim_g, config.train.learning_rate, epoch, os.path.join(experiment_dir, "G_" + checkpoint_suffix))
save_checkpoint(net_d, optim_d, config.train.learning_rate, epoch, os.path.join(experiment_dir, "D_" + checkpoint_suffix))
if custom_save_every_weights: model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth"))
if overtraining_detector and epoch > 1:
current_loss_disc = float(loss_disc)
loss_disc_history.append(current_loss_disc)
smoothed_value_disc = update_exponential_moving_average(smoothed_loss_disc_history, current_loss_disc)
is_overtraining_disc = check_overtraining(smoothed_loss_disc_history, overtraining_threshold * 2)
if is_overtraining_disc: consecutive_increases_disc += 1
else: consecutive_increases_disc = 0
current_loss_gen = float(lowest_value["value"])
loss_gen_history.append(current_loss_gen)
smoothed_value_gen = update_exponential_moving_average(smoothed_loss_gen_history, current_loss_gen)
is_overtraining_gen = check_overtraining(smoothed_loss_gen_history, overtraining_threshold, 0.01)
if is_overtraining_gen: consecutive_increases_gen += 1
else: consecutive_increases_gen = 0
if epoch % save_every_epoch == 0: save_to_json(training_file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history)
if (is_overtraining_gen and consecutive_increases_gen == overtraining_threshold or is_overtraining_disc and consecutive_increases_disc == (overtraining_threshold * 2)):
logger.info(translations["overtraining_find"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
done = True
else:
logger.info(translations["best_epoch"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
for file in glob.glob(os.path.join("assets", "weights", f"{model_name}_*e_*s_best_epoch.pth")):
model_del.append(file)
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth"))
if epoch >= custom_total_epoch:
logger.info(translations["success_training"].format(epoch=epoch, global_step=global_step, loss_gen_all=round(loss_gen_all.item(), 3)))
logger.info(translations["training_info"].format(lowest_value_rounded=round(float(lowest_value["value"]), 3), lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
pid_file_path = os.path.join(experiment_dir, "config.json")
with open(pid_file_path, "r") as pid_file:
pid_data = json.load(pid_file)
with open(pid_file_path, "w") as pid_file:
pid_data.pop("process_pids", None)
json.dump(pid_data, pid_file, indent=4)
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth"))
done = True
for m in model_del:
os.remove(m)
if model_add:
ckpt = (net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict())
for m in model_add:
extract_model(ckpt=ckpt, sr=sample_rate, pitch_guidance=pitch_guidance == True, name=model_name, model_path=m, epoch=epoch, step=global_step, version=version, hps=hps, model_author=model_author, vocoder=vocoder)
lowest_value_rounded = round(float(lowest_value["value"]), 3)
if epoch > 1 and overtraining_detector: logger.info(translations["model_training_info"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'], remaining_epochs_gen=(overtraining_threshold - consecutive_increases_gen), remaining_epochs_disc=((overtraining_threshold * 2) - consecutive_increases_disc), smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
elif epoch > 1 and overtraining_detector == False: logger.info(translations["model_training_info_2"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
else: logger.info(translations["model_training_info_3"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record()))
last_loss_gen_all = loss_gen_all
if done: os._exit(0)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
try:
main()
except Exception as e:
logger.error(f"{translations['training_error']} {e}")
import traceback
logger.debug(traceback.format_exc()) |