File size: 46,235 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
import re
import os
import sys
import time
import faiss
import torch
import shutil
import librosa
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers
import numpy as np
import soundfile as sf
import torch.nn.functional as F
from tqdm import tqdm
from scipy import signal
from distutils.util import strtobool
from fairseq import checkpoint_utils
warnings.filterwarnings("ignore")
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.algorithm.synthesizers import Synthesizer
from main.library.utils import check_predictors, check_embedders, load_audio, process_audio, merge_audio
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
config = Config()
translations = config.translations
logger = logging.getLogger(__name__)
logger.propagate = False
for l in ["torch", "faiss", "httpx", "fairseq", "httpcore", "faiss.loader", "numba.core", "urllib3"]:
logging.getLogger(l).setLevel(logging.ERROR)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "convert.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--pitch", type=int, default=0)
parser.add_argument("--filter_radius", type=int, default=3)
parser.add_argument("--index_rate", type=float, default=0.5)
parser.add_argument("--volume_envelope", type=float, default=1)
parser.add_argument("--protect", type=float, default=0.33)
parser.add_argument("--hop_length", type=int, default=64)
parser.add_argument("--f0_method", type=str, default="rmvpe")
parser.add_argument("--embedder_model", type=str, default="contentvec_base.pt")
parser.add_argument("--input_path", type=str, required=True)
parser.add_argument("--output_path", type=str, default="./audios/output.wav")
parser.add_argument("--export_format", type=str, default="wav")
parser.add_argument("--pth_path", type=str, required=True)
parser.add_argument("--index_path", type=str)
parser.add_argument("--f0_autotune", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--f0_autotune_strength", type=float, default=1)
parser.add_argument("--clean_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--resample_sr", type=int, default=0)
parser.add_argument("--split_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--f0_file", type=str, default=None)
parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--embedders_onnx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--formant_shifting", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--formant_qfrency", type=float, default=0.8)
parser.add_argument("--formant_timbre", type=float, default=0.8)
return parser.parse_args()
def main():
args = parse_arguments()
pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing, f0_file, f0_onnx, embedders_onnx, formant_shifting, formant_qfrency, formant_timbre = args.pitch, args.filter_radius, args.index_rate, args.volume_envelope,args.protect, args.hop_length, args.f0_method, args.input_path, args.output_path, args.pth_path, args.index_path, args.f0_autotune, args.f0_autotune_strength, args.clean_audio, args.clean_strength, args.export_format, args.embedder_model, args.resample_sr, args.split_audio, args.checkpointing, args.f0_file, args.f0_onnx, args.embedders_onnx, args.formant_shifting, args.formant_qfrency, args.formant_timbre
log_data = {translations['pitch']: pitch, translations['filter_radius']: filter_radius, translations['index_strength']: index_rate, translations['volume_envelope']: volume_envelope, translations['protect']: protect, "Hop length": hop_length, translations['f0_method']: f0_method, translations['audio_path']: input_path, translations['output_path']: output_path.replace('wav', export_format), translations['model_path']: pth_path, translations['indexpath']: index_path, translations['autotune']: f0_autotune, translations['clear_audio']: clean_audio, translations['export_format']: export_format, translations['hubert_model']: embedder_model, translations['split_audio']: split_audio, translations['memory_efficient_training']: checkpointing, translations["f0_onnx_mode"]: f0_onnx, translations["embed_onnx"]: embedders_onnx}
if clean_audio: log_data[translations['clean_strength']] = clean_strength
if resample_sr != 0: log_data[translations['sample_rate']] = resample_sr
if f0_autotune: log_data[translations['autotune_rate_info']] = f0_autotune_strength
if os.path.isfile(f0_file): log_data[translations['f0_file']] = f0_file
if formant_shifting:
log_data[translations['formant_qfrency']] = formant_qfrency
log_data[translations['formant_timbre']] = formant_timbre
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
run_convert_script(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, input_path=input_path, output_path=output_path, pth_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, split_audio=split_audio, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, embedders_onnx=embedders_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
def run_batch_convert(params):
path, audio_temp, export_format, cut_files, pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, embedder_model, resample_sr, checkpointing, f0_file, f0_onnx, formant_shifting, formant_qfrency, formant_timbre = params["path"], params["audio_temp"], params["export_format"], params["cut_files"], params["pitch"], params["filter_radius"], params["index_rate"], params["volume_envelope"], params["protect"], params["hop_length"], params["f0_method"], params["pth_path"], params["index_path"], params["f0_autotune"], params["f0_autotune_strength"], params["clean_audio"], params["clean_strength"], params["embedder_model"], params["resample_sr"], params["checkpointing"], params["f0_file"], params["f0_onnx"], params["formant_shifting"], params["formant_qfrency"], params["formant_timbre"]
segment_output_path = os.path.join(audio_temp, f"output_{cut_files.index(path)}.{export_format}")
if os.path.exists(segment_output_path): os.remove(segment_output_path)
VoiceConverter().convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=path, audio_output_path=segment_output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
os.remove(path)
if os.path.exists(segment_output_path): return segment_output_path
else:
logger.warning(f"{translations['not_found_convert_file']}: {segment_output_path}")
sys.exit(1)
def run_convert_script(pitch=0, filter_radius=3, index_rate=0.5, volume_envelope=1, protect=0.5, hop_length=64, f0_method="rmvpe", input_path=None, output_path="./output.wav", pth_path=None, index_path=None, f0_autotune=False, f0_autotune_strength=1, clean_audio=False, clean_strength=0.7, export_format="wav", embedder_model="contentvec_base.pt", resample_sr=0, split_audio=False, checkpointing=False, f0_file=None, f0_onnx=False, embedders_onnx=False, formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_onnx)
embedder_model += ".onnx" if embedders_onnx else ".pt"
cvt = VoiceConverter()
start_time = time.time()
pid_path = os.path.join("assets", "convert_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
if not pth_path or not os.path.exists(pth_path) or os.path.isdir(pth_path) or not pth_path.endswith((".pth", ".onnx")):
logger.warning(translations["provide_file"].format(filename=translations["model"]))
sys.exit(1)
processed_segments = []
audio_temp = os.path.join("audios_temp")
if not os.path.exists(audio_temp) and split_audio: os.makedirs(audio_temp, exist_ok=True)
if os.path.isdir(input_path):
try:
logger.info(translations["convert_batch"])
audio_files = [f for f in os.listdir(input_path) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
if not audio_files:
logger.warning(translations["not_found_audio"])
sys.exit(1)
logger.info(translations["found_audio"].format(audio_files=len(audio_files)))
for audio in audio_files:
audio_path = os.path.join(input_path, audio)
output_audio = os.path.join(input_path, os.path.splitext(audio)[0] + f"_output.{export_format}")
if split_audio:
try:
cut_files, time_stamps = process_audio(logger, audio_path, audio_temp)
params_list = [{"path": path, "audio_temp": audio_temp, "export_format": export_format, "cut_files": cut_files, "pitch": pitch, "filter_radius": filter_radius, "index_rate": index_rate, "volume_envelope": volume_envelope, "protect": protect, "hop_length": hop_length, "f0_method": f0_method, "pth_path": pth_path, "index_path": index_path, "f0_autotune": f0_autotune, "f0_autotune_strength": f0_autotune_strength, "clean_audio": clean_audio, "clean_strength": clean_strength, "embedder_model": embedder_model, "resample_sr": resample_sr, "checkpointing": checkpointing, "f0_file": f0_file, "f0_onnx": f0_onnx, "formant_shifting": formant_shifting, "formant_qfrency": formant_qfrency, "formant_timbre": formant_timbre} for path in cut_files]
with tqdm(total=len(params_list), desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
for params in params_list:
processed_segments.append(run_batch_convert(params))
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
merge_audio(processed_segments, time_stamps, audio_path, output_audio, export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
logger.info(f"{translations['convert_audio']} '{audio_path}'...")
if os.path.exists(output_audio): os.remove(output_audio)
with tqdm(total=1, desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=audio_path, audio_output_path=output_audio, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
logger.info(translations["convert_batch_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))
except Exception as e:
logger.error(translations["error_convert_batch_2"].format(e=e))
else:
logger.info(f"{translations['convert_audio']} '{input_path}'...")
if not os.path.exists(input_path):
logger.warning(translations["not_found_audio"])
sys.exit(1)
if os.path.exists(output_path): os.remove(output_path)
if split_audio:
try:
cut_files, time_stamps = process_audio(logger, input_path, audio_temp)
params_list = [{"path": path, "audio_temp": audio_temp, "export_format": export_format, "cut_files": cut_files, "pitch": pitch, "filter_radius": filter_radius, "index_rate": index_rate, "volume_envelope": volume_envelope, "protect": protect, "hop_length": hop_length, "f0_method": f0_method, "pth_path": pth_path, "index_path": index_path, "f0_autotune": f0_autotune, "f0_autotune_strength": f0_autotune_strength, "clean_audio": clean_audio, "clean_strength": clean_strength, "embedder_model": embedder_model, "resample_sr": resample_sr, "checkpointing": checkpointing, "f0_file": f0_file, "f0_onnx": f0_onnx, "formant_shifting": formant_shifting, "formant_qfrency": formant_qfrency, "formant_timbre": formant_timbre} for path in cut_files]
with tqdm(total=len(params_list), desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
for params in params_list:
processed_segments.append(run_batch_convert(params))
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
merge_audio(processed_segments, time_stamps, input_path, output_path.replace("wav", export_format), export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
with tqdm(total=1, desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=input_path, audio_output_path=output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(translations["convert_audio_success"].format(input_path=input_path, elapsed_time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))
def change_rms(source_audio, source_rate, target_audio, target_rate, rate):
rms2 = F.interpolate(torch.from_numpy(librosa.feature.rms(y=target_audio, frame_length=target_rate // 2 * 2, hop_length=target_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze()
return (target_audio * (torch.pow(F.interpolate(torch.from_numpy(librosa.feature.rms(y=source_audio, frame_length=source_rate // 2 * 2, hop_length=source_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze(), 1 - rate) * torch.pow(torch.maximum(rms2, torch.zeros_like(rms2) + 1e-6), rate - 1)).numpy())
def get_providers():
ort_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
else: providers = ["CPUExecutionProvider"]
return providers
class Autotune:
def __init__(self, ref_freqs):
self.ref_freqs = ref_freqs
self.note_dict = self.ref_freqs
def autotune_f0(self, f0, f0_autotune_strength):
autotuned_f0 = np.zeros_like(f0)
for i, freq in enumerate(f0):
autotuned_f0[i] = freq + (min(self.note_dict, key=lambda x: abs(x - freq)) - freq) * f0_autotune_strength
return autotuned_f0
class VC:
def __init__(self, tgt_sr, config):
self.x_pad = config.x_pad
self.x_query = config.x_query
self.x_center = config.x_center
self.x_max = config.x_max
self.sample_rate = 16000
self.window = 160
self.t_pad = self.sample_rate * self.x_pad
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sample_rate * self.x_query
self.t_center = self.sample_rate * self.x_center
self.t_max = self.sample_rate * self.x_max
self.time_step = self.window / self.sample_rate * 1000
self.f0_min = 50
self.f0_max = 1100
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = config.device
self.ref_freqs = [49.00, 51.91, 55.00, 58.27, 61.74, 65.41, 69.30, 73.42, 77.78, 82.41, 87.31, 92.50, 98.00, 103.83, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 185.00, 196.00, 207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 392.00, 415.30, 440.00, 466.16, 493.88, 523.25, 554.37, 587.33, 622.25, 659.25, 698.46, 739.99, 783.99, 830.61, 880.00, 932.33, 987.77, 1046.50]
self.autotune = Autotune(self.ref_freqs)
self.note_dict = self.autotune.note_dict
def get_f0_pm(self, x, p_len):
import parselmouth
f0 = (parselmouth.Sound(x, self.sample_rate).to_pitch_ac(time_step=self.window / self.sample_rate * 1000 / 1000, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"])
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
return f0
def get_f0_mangio_crepe(self, x, p_len, hop_length, model="full", onnx=False):
from main.library.predictors.CREPE import predict
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
audio = torch.unsqueeze(torch.from_numpy(x).to(self.device, copy=True), dim=0)
if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()
p_len = p_len or x.shape[0] // hop_length
source = np.array(predict(audio.detach(), self.sample_rate, hop_length, self.f0_min, self.f0_max, model, batch_size=hop_length * 2, device=self.device, pad=True, providers=get_providers(), onnx=onnx).squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_crepe(self, x, model="full", onnx=False):
from main.library.predictors.CREPE import predict, mean, median
f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.sample_rate, self.window, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=get_providers(), onnx=onnx)
f0, pd = mean(f0, 3), median(pd, 3)
f0[pd < 0.1] = 0
return f0[0].cpu().numpy()
def get_f0_fcpe(self, x, p_len, hop_length, onnx=False, legacy=False):
from main.library.predictors.FCPE import FCPE
model_fcpe = FCPE(os.path.join("assets", "models", "predictors", ("fcpe_legacy" if legacy else"fcpe") + (".onnx" if onnx else ".pt")), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.03, providers=get_providers(), onnx=onnx, legacy=legacy)
f0 = model_fcpe.compute_f0(x, p_len=p_len)
del model_fcpe
return f0
def get_f0_rmvpe(self, x, legacy=False, onnx=False):
from main.library.predictors.RMVPE import RMVPE
rmvpe_model = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if onnx else ".pt")), device=self.device, onnx=onnx, providers=get_providers())
f0 = rmvpe_model.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else rmvpe_model.infer_from_audio(x, thred=0.03)
del rmvpe_model
return f0
def get_f0_pyworld_wrapper(self, x, filter_radius, model="harvest"):
from main.library.predictors.WORLD_WRAPPER import PYWORLD
pw = PYWORLD()
x = x.astype(np.double)
if model == "harvest": f0, t = pw.harvest(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
elif model == "dio": f0, t = pw.dio(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
else: raise ValueError(translations["method_not_valid"])
f0 = pw.stonemask(x, self.sample_rate, t, f0)
if filter_radius > 2 or model == "dio": f0 = signal.medfilt(f0, 3)
return f0
def get_f0_pyworld(self, x, filter_radius, model="harvest"):
from main.library.predictors.pyworld import harvest, dio, stonemask
x = x.astype(np.double)
if model == "harvest": f0, t = harvest.harvest(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
elif model == "dio": f0, t = dio.dio(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
else: raise ValueError(translations["method_not_valid"])
f0 = stonemask.stonemask(x, self.sample_rate, t, f0)
if filter_radius > 2 or model == "dio": f0 = signal.medfilt(f0, 3)
return f0
def get_f0_swipe(self, x):
from main.library.predictors.SWIPE import swipe
f0, _ = swipe(x.astype(np.double), self.sample_rate, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=10, device=self.device)
return f0
def get_f0_yin(self, x, hop_length, p_len):
source = np.array(librosa.yin(x.astype(np.float32), sr=self.sample_rate, fmin=self.f0_min, fmax=self.f0_max, hop_length=hop_length))
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_pyin(self, x, hop_length, p_len):
f0, _, _ = librosa.pyin(x.astype(np.float32), fmin=self.f0_min, fmax=self.f0_max, sr=self.sample_rate, hop_length=hop_length)
source = np.array(f0)
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_hybrid(self, methods_str, x, p_len, hop_length, filter_radius, onnx_mode):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack, resampled_stack = [], []
logger.debug(translations["hybrid_methods"].format(methods=methods))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
for method in methods:
f0 = None
f0_methods = {"pm": lambda: self.get_f0_pm(x, p_len), "diow": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "dio"), "dio": lambda: self.get_f0_pyworld(x, filter_radius, "dio"), "mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=onnx_mode), "mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=onnx_mode), "mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=onnx_mode), "mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=onnx_mode), "mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=onnx_mode), "crepe-tiny": lambda: self.get_f0_crepe(x, "tiny", onnx=onnx_mode), "crepe-small": lambda: self.get_f0_crepe(x, "small", onnx=onnx_mode), "crepe-medium": lambda: self.get_f0_crepe(x, "medium", onnx=onnx_mode), "crepe-large": lambda: self.get_f0_crepe(x, "large", onnx=onnx_mode), "crepe-full": lambda: self.get_f0_crepe(x, "full", onnx=onnx_mode), "fcpe": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), onnx=onnx_mode), "fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True, onnx=onnx_mode), "rmvpe": lambda: self.get_f0_rmvpe(x, onnx=onnx_mode), "rmvpe-legacy": lambda: self.get_f0_rmvpe(x, legacy=True, onnx=onnx_mode), "harvestw": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "harvest"), "harvest": lambda: self.get_f0_pyworld(x, filter_radius, "harvest"), "yin": lambda: self.get_f0_yin(x, int(hop_length), p_len), "pyin": lambda: self.get_f0_pyin(x, int(hop_length), p_len), "swipe": lambda: self.get_f0_swipe(x)}
f0 = f0_methods.get(method, lambda: ValueError(translations["method_not_valid"]))()
f0_computation_stack.append(f0)
for f0 in f0_computation_stack:
resampled_stack.append(np.interp(np.linspace(0, len(f0), p_len), np.arange(len(f0)), f0))
return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
def get_f0(self, x, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength, inp_f0=None, onnx_mode=False):
f0_methods = {"pm": lambda: self.get_f0_pm(x, p_len), "diow": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "dio"), "dio": lambda: self.get_f0_pyworld(x, filter_radius, "dio"), "mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=onnx_mode), "mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=onnx_mode), "mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=onnx_mode), "mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=onnx_mode), "mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=onnx_mode), "crepe-tiny": lambda: self.get_f0_crepe(x, "tiny", onnx=onnx_mode), "crepe-small": lambda: self.get_f0_crepe(x, "small", onnx=onnx_mode), "crepe-medium": lambda: self.get_f0_crepe(x, "medium", onnx=onnx_mode), "crepe-large": lambda: self.get_f0_crepe(x, "large", onnx=onnx_mode), "crepe-full": lambda: self.get_f0_crepe(x, "full", onnx=onnx_mode), "fcpe": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), onnx=onnx_mode), "fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True, onnx=onnx_mode), "rmvpe": lambda: self.get_f0_rmvpe(x, onnx=onnx_mode), "rmvpe-legacy": lambda: self.get_f0_rmvpe(x, legacy=True, onnx=onnx_mode), "harvestw": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "harvest"), "harvest": lambda: self.get_f0_pyworld(x, filter_radius, "harvest"), "yin": lambda: self.get_f0_yin(x, int(hop_length), p_len), "pyin": lambda: self.get_f0_pyin(x, int(hop_length), p_len), "swipe": lambda: self.get_f0_swipe(x)}
f0 = self.get_f0_hybrid(f0_method, x, p_len, hop_length, filter_radius, onnx_mode) if "hybrid" in f0_method else f0_methods.get(f0_method, lambda: ValueError(translations["method_not_valid"]))()
if f0_autotune: f0 = Autotune.autotune_f0(self, f0, f0_autotune_strength)
if isinstance(f0, tuple): f0 = f0[0]
f0 *= pow(2, pitch / 12)
tf0 = self.sample_rate // self.window
if inp_f0 is not None:
replace_f0 = np.interp(list(range(np.round((inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1).astype(np.int16))), inp_f0[:, 0] * 100, inp_f0[:, 1])
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[:f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]]
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (self.f0_mel_max - self.f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
return np.rint(f0_mel).astype(np.int32), f0.copy()
def extract_features(self, model, feats, version):
return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)
def voice_conversion(self, model, net_g, sid, audio0, pitch, pitchf, index, big_npy, index_rate, version, protect):
pitch_guidance = pitch != None and pitchf != None
feats = torch.from_numpy(audio0).float()
if feats.dim() == 2: feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
if self.embed_suffix == ".pt":
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {"source": feats.to(self.device), "padding_mask": padding_mask, "output_layer": 9 if version == "v1" else 12}
with torch.no_grad():
if self.embed_suffix == ".pt":
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
else: feats = self.extract_features(model, feats, version).to(self.device)
if protect < 0.5 and pitch_guidance: feats0 = feats.clone()
if (not isinstance(index, type(None)) and not isinstance(big_npy, type(None)) and index_rate != 0):
npy = feats[0].cpu().numpy()
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
feats = (torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch_guidance: feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch_guidance:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch_guidance:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
audio1 = ((net_g.infer(feats.float(), p_len, pitch if pitch_guidance else None, pitchf.float() if pitch_guidance else None, sid)[0][0, 0]).data.cpu().float().numpy()) if self.suffix == ".pth" else (net_g.run([net_g.get_outputs()[0].name], ({net_g.get_inputs()[0].name: feats.cpu().numpy().astype(np.float32), net_g.get_inputs()[1].name: p_len.cpu().numpy(), net_g.get_inputs()[2].name: np.array([sid.cpu().item()], dtype=np.int64), net_g.get_inputs()[3].name: np.random.randn(1, 192, p_len).astype(np.float32), net_g.get_inputs()[4].name: pitch.cpu().numpy().astype(np.int64), net_g.get_inputs()[5].name: pitchf.cpu().numpy().astype(np.float32)} if pitch_guidance else {net_g.get_inputs()[0].name: feats.cpu().numpy().astype(np.float32), net_g.get_inputs()[1].name: p_len.cpu().numpy(), net_g.get_inputs()[2].name: np.array([sid.cpu().item()], dtype=np.int64), net_g.get_inputs()[3].name: np.random.randn(1, 192, p_len).astype(np.float32)}))[0][0, 0])
if self.embed_suffix == ".pt": del padding_mask
del feats, p_len, net_g
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
return audio1
def pipeline(self, model, net_g, sid, audio, pitch, f0_method, file_index, index_rate, pitch_guidance, filter_radius, tgt_sr, resample_sr, volume_envelope, version, protect, hop_length, f0_autotune, f0_autotune_strength, suffix, embed_suffix, f0_file=None, f0_onnx=False):
self.suffix = suffix
self.embed_suffix = embed_suffix
if file_index != "" and os.path.exists(file_index) and index_rate != 0:
try:
index = faiss.read_index(file_index)
big_npy = index.reconstruct_n(0, index.ntotal)
except Exception as e:
logger.error(translations["read_faiss_index_error"].format(e=e))
index = big_npy = None
else: index = big_npy = None
opt_ts, audio_opt = [], []
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query : t + self.t_query]) == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min())[0][0])
s = 0
t, inp_f0 = None, None
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
p_len = audio_pad.shape[0] // self.window
if hasattr(f0_file, "name"):
try:
with open(f0_file.name, "r") as f:
raw_lines = f.read()
if len(raw_lines) > 0:
inp_f0 = []
for line in raw_lines.strip("\n").split("\n"):
inp_f0.append([float(i) for i in line.split(",")])
inp_f0 = np.array(inp_f0, dtype=np.float32)
except:
logger.error(translations["error_readfile"])
inp_f0 = None
if pitch_guidance:
pitch, pitchf = self.get_f0(audio_pad, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength, inp_f0, onnx_mode=f0_onnx)
pitch, pitchf = pitch[:p_len], pitchf[:p_len]
if self.device == "mps": pitchf = pitchf.astype(np.float32)
pitch, pitchf = torch.tensor(pitch, device=self.device).unsqueeze(0).long(), torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
for t in opt_ts:
t = t // self.window * self.window
audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], pitch[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, pitchf[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
s = t
audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[t:], (pitch[:, t // self.window :] if t is not None else pitch) if pitch_guidance else None, (pitchf[:, t // self.window :] if t is not None else pitchf) if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
audio_opt = np.concatenate(audio_opt)
if volume_envelope != 1: audio_opt = change_rms(audio, self.sample_rate, audio_opt, tgt_sr, volume_envelope)
if resample_sr >= self.sample_rate and tgt_sr != resample_sr: audio_opt = librosa.resample(audio_opt, orig_sr=tgt_sr, target_sr=resample_sr, res_type="soxr_vhq")
audio_max = np.abs(audio_opt).max() / 0.99
if audio_max > 1: audio_opt /= audio_max
if pitch_guidance: del pitch, pitchf
del sid
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
return audio_opt
class VoiceConverter:
def __init__(self):
self.config = config
self.hubert_model = None
self.tgt_sr = None
self.net_g = None
self.vc = None
self.cpt = None
self.version = None
self.n_spk = None
self.use_f0 = None
self.loaded_model = None
self.vocoder = "Default"
self.checkpointing = False
def load_embedders(self, embedder_model):
embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
if not os.path.exists(embedder_model_path) and not embedder_model.endswith((".pt", ".onnx")): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
try:
if embedder_model.endswith(".pt"):
models, _, _ = checkpoint_utils.load_model_ensemble_and_task([embedder_model_path], suffix="")
self.embed_suffix = ".pt"
self.hubert_model = models[0].to(self.config.device).float().eval()
else:
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
self.embed_suffix = ".onnx"
self.hubert_model = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=get_providers())
except Exception as e:
logger.error(translations["read_model_error"].format(e=e))
def convert_audio(self, audio_input_path, audio_output_path, model_path, index_path, embedder_model, pitch, f0_method, index_rate, volume_envelope, protect, hop_length, f0_autotune, f0_autotune_strength, filter_radius, clean_audio, clean_strength, export_format, resample_sr = 0, sid = 0, checkpointing = False, f0_file = None, f0_onnx = False, formant_shifting = False, formant_qfrency=0.8, formant_timbre=0.8):
try:
self.get_vc(model_path, sid)
audio = load_audio(logger, audio_input_path, 16000, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
self.checkpointing = checkpointing
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1: audio /= audio_max
if not self.hubert_model: self.load_embedders(embedder_model)
if self.tgt_sr != resample_sr >= 16000: self.tgt_sr = resample_sr
target_sr = min([8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 96000], key=lambda x: abs(x - self.tgt_sr))
audio_output = self.vc.pipeline(model=self.hubert_model, net_g=self.net_g, sid=sid, audio=audio, pitch=pitch, f0_method=f0_method, file_index=(index_path.strip().strip('"').strip("\n").strip('"').strip().replace("trained", "added")), index_rate=index_rate, pitch_guidance=self.use_f0, filter_radius=filter_radius, tgt_sr=self.tgt_sr, resample_sr=target_sr, volume_envelope=volume_envelope, version=self.version, protect=protect, hop_length=hop_length, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, suffix=self.suffix, embed_suffix=self.embed_suffix, f0_file=f0_file, f0_onnx=f0_onnx)
if clean_audio:
from main.tools.noisereduce import reduce_noise
audio_output = reduce_noise(y=audio_output, sr=target_sr, prop_decrease=clean_strength, device=config.device)
sf.write(audio_output_path, audio_output, target_sr, format=export_format)
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
import traceback
logger.debug(traceback.format_exc())
def get_vc(self, weight_root, sid):
if sid == "" or sid == []:
self.cleanup()
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
if not self.loaded_model or self.loaded_model != weight_root:
self.loaded_model = weight_root
self.load_model()
if self.cpt is not None: self.setup()
def cleanup(self):
if self.hubert_model is not None:
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
del self.net_g, self.cpt
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
self.cpt = None
def load_model(self):
if os.path.isfile(self.loaded_model):
if self.loaded_model.endswith(".pth"): self.cpt = torch.load(self.loaded_model, map_location="cpu")
else:
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
self.cpt = onnxruntime.InferenceSession(self.loaded_model, sess_options=sess_options, providers=get_providers())
else: self.cpt = None
def setup(self):
if self.cpt is not None:
if self.loaded_model.endswith(".pth"):
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
self.use_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
self.vocoder = self.cpt.get("vocoder", "Default")
self.net_g = Synthesizer(*self.cpt["config"], use_f0=self.use_f0, text_enc_hidden_dim=768 if self.version == "v2" else 256, vocoder=self.vocoder, checkpointing=self.checkpointing)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device).float()
self.n_spk = self.cpt["config"][-3]
self.suffix = ".pth"
else:
import json
import onnx
model = onnx.load(self.loaded_model)
metadata_dict = None
for prop in model.metadata_props:
if prop.key == "model_info":
metadata_dict = json.loads(prop.value)
break
self.net_g = self.cpt
self.tgt_sr = metadata_dict.get("sr", 32000)
self.use_f0 = metadata_dict.get("f0", 1)
self.suffix = ".onnx"
self.vc = VC(self.tgt_sr, self.config)
if __name__ == "__main__": main() |