File size: 9,265 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import sys
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
sys.path.append(os.getcwd())
from .commons import get_padding
class ResBlock(nn.Module):
def __init__(self, *, in_channels, out_channels, kernel_size = 7, dilation = (1, 3, 5), leaky_relu_slope = 0.2):
super(ResBlock, self).__init__()
self.leaky_relu_slope = leaky_relu_slope
self.in_channels = in_channels
self.out_channels = out_channels
self.convs1 = nn.ModuleList([weight_norm(nn.Conv1d(in_channels=in_channels if idx == 0 else out_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1, dilation=d, padding=get_padding(kernel_size, d))) for idx, d in enumerate(dilation)])
self.convs1.apply(self.init_weights)
self.convs2 = nn.ModuleList([weight_norm(nn.Conv1d(in_channels=out_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1, dilation=d, padding=get_padding(kernel_size, d))) for _, d in enumerate(dilation)])
self.convs2.apply(self.init_weights)
def forward(self, x):
for idx, (c1, c2) in enumerate(zip(self.convs1, self.convs2)):
xt = c2(F.leaky_relu_(c1(F.leaky_relu(x, self.leaky_relu_slope)), self.leaky_relu_slope))
x = (xt + x) if idx != 0 or self.in_channels == self.out_channels else xt
return x
def remove_parametrizations(self):
for c1, c2 in zip(self.convs1, self.convs2):
remove_parametrizations(c1)
remove_parametrizations(c2)
def init_weights(self, m):
if type(m) == nn.Conv1d:
m.weight.data.normal_(0, 0.01)
m.bias.data.fill_(0.0)
class AdaIN(nn.Module):
def __init__(self, *, channels, leaky_relu_slope = 0.2):
super().__init__()
self.weight = nn.Parameter(torch.ones(channels))
self.activation = nn.LeakyReLU(leaky_relu_slope, inplace=True)
def forward(self, x):
return self.activation(x + (torch.randn_like(x) * self.weight[None, :, None]))
class ParallelResBlock(nn.Module):
def __init__(self, *, in_channels, out_channels, kernel_sizes = (3, 7, 11), dilation = (1, 3, 5), leaky_relu_slope = 0.2):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.input_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=1, padding=3)
self.blocks = nn.ModuleList([nn.Sequential(AdaIN(channels=out_channels), ResBlock(in_channels=out_channels, out_channels=out_channels, kernel_size=kernel_size, dilation=dilation, leaky_relu_slope=leaky_relu_slope), AdaIN(channels=out_channels)) for kernel_size in kernel_sizes])
def forward(self, x):
x = self.input_conv(x)
return torch.mean(torch.stack([block(x) for block in self.blocks]), dim=0)
def remove_parametrizations(self):
for block in self.blocks:
block[1].remove_parametrizations()
class SineGenerator(nn.Module):
def __init__(self, samp_rate, harmonic_num=0, sine_amp=0.1, noise_std=0.003, voiced_threshold=0):
super(SineGenerator, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.merge = nn.Sequential(nn.Linear(self.dim, 1, bias=False), nn.Tanh())
def _f02uv(self, f0):
return torch.ones_like(f0) * (f0 > self.voiced_threshold)
def _f02sine(self, f0_values):
rad_values = (f0_values / self.sampling_rate) % 1
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
tmp_over_one = torch.cumsum(rad_values, 1) % 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
return torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
def forward(self, f0):
with torch.no_grad():
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in np.arange(self.harmonic_num):
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)
sine_waves = self._f02sine(f0_buf) * self.sine_amp
uv = self._f02uv(f0)
sine_waves = sine_waves * uv + ((uv * self.noise_std + (1 - uv) * self.sine_amp / 3) * torch.randn_like(sine_waves))
return self.merge(sine_waves - sine_waves.mean(dim=1, keepdim=True))
class RefineGANGenerator(nn.Module):
def __init__(self, *, sample_rate = 44100, upsample_rates = (8, 8, 2, 2), leaky_relu_slope = 0.2, num_mels = 128, gin_channels = 256, checkpointing = False, upsample_initial_channel = 512):
super().__init__()
self.upsample_rates = upsample_rates
self.checkpointing = checkpointing
self.leaky_relu_slope = leaky_relu_slope
self.upp = int(np.prod(upsample_rates))
assert self.upp == sample_rate // 100
self.m_source = SineGenerator(sample_rate)
self.pre_conv = weight_norm(nn.Conv1d(in_channels=1, out_channels=upsample_initial_channel // 2, kernel_size=7, stride=1, padding=3, bias=False))
channels = upsample_initial_channel
self.downsample_blocks = nn.ModuleList([])
stride_f0s = [upsample_rates[1] * upsample_rates[2] * upsample_rates[3], upsample_rates[2] * upsample_rates[3], upsample_rates[3], 1]
for i, _ in enumerate(upsample_rates):
if self.upp == 441: self.downsample_blocks.append(nn.Conv1d(in_channels=1, out_channels=channels // 2 ** (i + 2), kernel_size = 1))
else: self.downsample_blocks.append(nn.Conv1d(in_channels=1, out_channels=channels // 2 ** (i + 2), kernel_size=stride_f0s[i] * 2 if stride_f0s[i] > 1 else 1, stride=stride_f0s[i], padding=stride_f0s[i] // 2))
self.mel_conv = weight_norm(nn.Conv1d(in_channels=num_mels, out_channels=channels // 2, kernel_size=7, stride=1, padding=3))
if gin_channels != 0: self.cond = nn.Conv1d(256, channels // 2, 1)
self.upsample_blocks = nn.ModuleList([])
self.upsample_conv_blocks = nn.ModuleList([])
self.filters = nn.ModuleList([])
for rate in upsample_rates:
new_channels = channels // 2
self.upsample_blocks.append(nn.Upsample(scale_factor=rate, mode="linear"))
low_pass = nn.Conv1d(channels, channels, kernel_size=15, padding=7, groups=channels, bias=False)
low_pass.weight.data.fill_(1.0 / 15)
self.filters.append(low_pass)
self.upsample_conv_blocks.append(ParallelResBlock(in_channels=channels + channels // 4, out_channels=new_channels, kernel_sizes=(3, 7, 11), dilation=(1, 3, 5), leaky_relu_slope=leaky_relu_slope))
channels = new_channels
self.conv_post = weight_norm(nn.Conv1d(in_channels=channels, out_channels=1, kernel_size=7, stride=1, padding=3))
def forward(self, mel, f0, g = None):
f0 = F.interpolate(f0.unsqueeze(1), size=mel.shape[-1] * self.upp, mode="linear")
har_source = self.m_source(f0.transpose(1, 2)).transpose(1, 2)
x = F.interpolate(self.pre_conv(har_source), size=mel.shape[-1], mode="linear")
mel = self.mel_conv(mel)
if g is not None: mel += self.cond(g)
x = torch.cat([mel, x], dim=1)
for ups, res, down, flt in zip(self.upsample_blocks, self.upsample_conv_blocks, self.downsample_blocks, self.filters):
x = F.leaky_relu_(x, self.leaky_relu_slope)
if self.training and self.checkpointing:
x = checkpoint(flt, checkpoint(ups, x, use_reentrant=False), use_reentrant=False)
h = down(har_source)
if self.upp == 441: h = F.interpolate(h, size=x.shape[-1], mode="linear")
x = checkpoint(res, torch.cat([x, h], dim=1), use_reentrant=False)
else:
x = flt(ups(x))
h = down(har_source)
if self.upp == 441: h = F.interpolate(h, size=x.shape[-1], mode="linear")
x = res(torch.cat([x, h], dim=1))
return torch.tanh_(self.conv_post(F.leaky_relu_(x, self.leaky_relu_slope)))
def remove_parametrizations(self):
remove_parametrizations(self.source_conv)
remove_parametrizations(self.mel_conv)
remove_parametrizations(self.conv_post)
for block in self.downsample_blocks:
block[1].remove_parametrizations()
for block in self.upsample_conv_blocks:
block.remove_parametrizations() |