File size: 5,817 Bytes
e4d8df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import sys
import torch

from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm

sys.path.append(os.getcwd())

from .modules import WaveNet
from .commons import get_padding, init_weights


LRELU_SLOPE = 0.1

def create_conv1d_layer(channels, kernel_size, dilation):
    return weight_norm(torch.nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation, padding=get_padding(kernel_size, dilation)))

def apply_mask(tensor, mask):
    return tensor * mask if mask is not None else tensor

class ResBlockBase(torch.nn.Module):
    def __init__(self, channels, kernel_size, dilations):
        super(ResBlockBase, self).__init__()

        self.convs1 = torch.nn.ModuleList([create_conv1d_layer(channels, kernel_size, d) for d in dilations])
        self.convs1.apply(init_weights)

        self.convs2 = torch.nn.ModuleList([create_conv1d_layer(channels, kernel_size, 1) for _ in dilations])
        self.convs2.apply(init_weights)

    def forward(self, x, x_mask=None):
        for c1, c2 in zip(self.convs1, self.convs2):
            x = c2(apply_mask(torch.nn.functional.leaky_relu(c1(apply_mask(torch.nn.functional.leaky_relu(x, LRELU_SLOPE), x_mask)), LRELU_SLOPE), x_mask)) + x

        return apply_mask(x, x_mask)

    def remove_weight_norm(self):
        for conv in self.convs1 + self.convs2:
            remove_weight_norm(conv)

class ResBlock(ResBlockBase):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
        super(ResBlock, self).__init__(channels, kernel_size, dilation)

class Log(torch.nn.Module):
    def forward(self, x, x_mask, reverse=False, **kwargs):
        if not reverse:
            y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
            return y, torch.sum(-y, [1, 2])
        else: return torch.exp(x) * x_mask

class Flip(torch.nn.Module):
    def forward(self, x, *args, reverse=False, **kwargs):
        x = torch.flip(x, [1])

        if not reverse: return x, torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
        else: return x

class ElementwiseAffine(torch.nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.channels = channels
        self.m = torch.nn.Parameter(torch.zeros(channels, 1))
        self.logs = torch.nn.Parameter(torch.zeros(channels, 1))

    def forward(self, x, x_mask, reverse=False, **kwargs):
        if not reverse: return ((self.m + torch.exp(self.logs) * x) * x_mask), torch.sum(self.logs * x_mask, [1, 2])
        else: return (x - self.m) * torch.exp(-self.logs) * x_mask

class ResidualCouplingBlock(torch.nn.Module):
    def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
        super(ResidualCouplingBlock, self).__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels
        self.flows = torch.nn.ModuleList()

        for _ in range(n_flows):
            self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
            self.flows.append(Flip())

    def forward(self, x, x_mask, g = None, reverse = False):
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x = flow.forward(x, x_mask, g=g, reverse=reverse)

        return x

    def remove_weight_norm(self):
        for i in range(self.n_flows):
            self.flows[i * 2].remove_weight_norm()

    def __prepare_scriptable__(self):
        for i in range(self.n_flows):
            for hook in self.flows[i * 2]._forward_pre_hooks.values():
                if (hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm"): torch.nn.utils.remove_weight_norm(self.flows[i * 2])

        return self

class ResidualCouplingLayer(torch.nn.Module):
    def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False):
        assert channels % 2 == 0, "Channels/2"
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.half_channels = channels // 2
        self.mean_only = mean_only

        self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1)
        self.enc = WaveNet(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
        self.post = torch.nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)

        self.post.weight.data.zero_()
        self.post.bias.data.zero_()

    def forward(self, x, x_mask, g=None, reverse=False):
        x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
        stats = self.post(self.enc((self.pre(x0) * x_mask), x_mask, g=g)) * x_mask

        if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1)
        else:
            m = stats
            logs = torch.zeros_like(m)

        if not reverse: return torch.cat([x0, (m + x1 * torch.exp(logs) * x_mask)], 1), torch.sum(logs, [1, 2])
        else: return torch.cat([x0, ((x1 - m) * torch.exp(-logs) * x_mask)], 1)

    def remove_weight_norm(self):
        self.enc.remove_weight_norm()