File size: 19,352 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import sys
import time
import yaml
import torch
import codecs
import hashlib
import logging
import platform
import warnings
import requests
import onnxruntime
from importlib import metadata, import_module
now_dir = os.getcwd()
sys.path.append(now_dir)
from main.configs.config import Config
translations = Config().translations
class Separator:
def __init__(self, logger=logging.getLogger(__name__), log_level=logging.INFO, log_formatter=None, model_file_dir="assets/models/uvr5", output_dir=None, output_format="wav", output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": False}, demucs_params={"segment_size": "Default", "shifts": 2, "overlap": 0.25, "segments_enabled": True}):
self.logger = logger
self.log_level = log_level
self.log_formatter = log_formatter
self.log_handler = logging.StreamHandler()
if self.log_formatter is None: self.log_formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(module)s - %(message)s")
self.log_handler.setFormatter(self.log_formatter)
if not self.logger.hasHandlers(): self.logger.addHandler(self.log_handler)
if log_level > logging.DEBUG: warnings.filterwarnings("ignore")
self.logger.info(translations["separator_info"].format(output_dir=output_dir, output_format=output_format))
self.model_file_dir = model_file_dir
if output_dir is None:
output_dir = now_dir
self.logger.info(translations["output_dir_is_none"])
self.output_dir = output_dir
os.makedirs(self.model_file_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
self.output_format = output_format
self.output_bitrate = output_bitrate
if self.output_format is None: self.output_format = "wav"
self.normalization_threshold = normalization_threshold
if normalization_threshold <= 0 or normalization_threshold > 1: raise ValueError(translations[">0or=1"])
self.output_single_stem = output_single_stem
if output_single_stem is not None: self.logger.debug(translations["output_single"].format(output_single_stem=output_single_stem))
self.invert_using_spec = invert_using_spec
if self.invert_using_spec: self.logger.debug(translations["step2"])
self.sample_rate = int(sample_rate)
self.arch_specific_params = {"MDX": mdx_params, "Demucs": demucs_params}
self.torch_device = None
self.torch_device_cpu = None
self.torch_device_mps = None
self.onnx_execution_provider = None
self.model_instance = None
self.model_is_uvr_vip = False
self.model_friendly_name = None
self.setup_accelerated_inferencing_device()
def setup_accelerated_inferencing_device(self):
system_info = self.get_system_info()
self.log_onnxruntime_packages()
self.setup_torch_device(system_info)
def get_system_info(self):
os_name = platform.system()
os_version = platform.version()
self.logger.info(f"{translations['os']}: {os_name} {os_version}")
system_info = platform.uname()
self.logger.info(translations["platform_info"].format(system_info=system_info, node=system_info.node, release=system_info.release, machine=system_info.machine, processor=system_info.processor))
python_version = platform.python_version()
self.logger.info(f"{translations['name_ver'].format(name='python')}: {python_version}")
pytorch_version = torch.__version__
self.logger.info(f"{translations['name_ver'].format(name='pytorch')}: {pytorch_version}")
return system_info
def log_onnxruntime_packages(self):
onnxruntime_gpu_package = self.get_package_distribution("onnxruntime-gpu")
onnxruntime_cpu_package = self.get_package_distribution("onnxruntime")
if onnxruntime_gpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='GPU')}: {onnxruntime_gpu_package.version}")
if onnxruntime_cpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='CPU')}: {onnxruntime_cpu_package.version}")
def setup_torch_device(self, system_info):
hardware_acceleration_enabled = False
ort_providers = onnxruntime.get_available_providers()
self.torch_device_cpu = torch.device("cpu")
if torch.cuda.is_available():
self.configure_cuda(ort_providers)
hardware_acceleration_enabled = True
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and system_info.processor == "arm":
self.configure_mps(ort_providers)
hardware_acceleration_enabled = True
if not hardware_acceleration_enabled:
self.logger.info(translations["running_in_cpu"])
self.torch_device = self.torch_device_cpu
self.onnx_execution_provider = ["CPUExecutionProvider"]
def configure_cuda(self, ort_providers):
self.logger.info(translations["running_in_cuda"])
self.torch_device = torch.device("cuda")
if "CUDAExecutionProvider" in ort_providers:
self.logger.info(translations["onnx_have"].format(have='CUDAExecutionProvider'))
self.onnx_execution_provider = ["CUDAExecutionProvider"]
else: self.logger.warning(translations["onnx_not_have"].format(have='CUDAExecutionProvider'))
def configure_mps(self, ort_providers):
self.logger.info(translations["set_torch_mps"])
self.torch_device_mps = torch.device("mps")
self.torch_device = self.torch_device_mps
if "CoreMLExecutionProvider" in ort_providers:
self.logger.info(translations["onnx_have"].format(have='CoreMLExecutionProvider'))
self.onnx_execution_provider = ["CoreMLExecutionProvider"]
else: self.logger.warning(translations["onnx_not_have"].format(have='CoreMLExecutionProvider'))
def get_package_distribution(self, package_name):
try:
return metadata.distribution(package_name)
except metadata.PackageNotFoundError:
self.logger.debug(translations["python_not_install"].format(package_name=package_name))
return None
def get_model_hash(self, model_path):
self.logger.debug(translations["hash"].format(model_path=model_path))
try:
with open(model_path, "rb") as f:
f.seek(-10000 * 1024, 2)
return hashlib.md5(f.read()).hexdigest()
except IOError as e:
self.logger.error(translations["ioerror"].format(e=e))
return hashlib.md5(open(model_path, "rb").read()).hexdigest()
def download_file_if_not_exists(self, url, output_path):
if os.path.isfile(output_path):
self.logger.debug(translations["cancel_download"].format(output_path=output_path))
return
self.logger.debug(translations["download_model"].format(url=url, output_path=output_path))
response = requests.get(url, stream=True, timeout=300)
if response.status_code == 200:
from tqdm import tqdm
progress_bar = tqdm(total=int(response.headers.get("content-length", 0)), ncols=100, unit="byte")
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
progress_bar.update(len(chunk))
f.write(chunk)
progress_bar.close()
else: raise RuntimeError(translations["download_error"].format(url=url, status_code=response.status_code))
def print_uvr_vip_message(self):
if self.model_is_uvr_vip:
self.logger.warning(translations["vip_model"].format(model_friendly_name=self.model_friendly_name))
self.logger.warning(translations["vip_print"])
def list_supported_model_files(self):
response = requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/hie_zbqryf.wfba", "rot13"))
response.raise_for_status()
model_downloads_list = response.json()
self.logger.debug(translations["load_download_json"])
return {"MDX": {**model_downloads_list["mdx_download_list"], **model_downloads_list["mdx_download_vip_list"]}, "Demucs": {key: value for key, value in model_downloads_list["demucs_download_list"].items() if key.startswith("Demucs v4")}}
def download_model_files(self, model_filename):
model_path = os.path.join(self.model_file_dir, model_filename)
supported_model_files_grouped = self.list_supported_model_files()
yaml_config_filename = None
self.logger.debug(translations["search_model"].format(model_filename=model_filename))
for model_type, model_list in supported_model_files_grouped.items():
for model_friendly_name, model_download_list in model_list.items():
self.model_is_uvr_vip = "VIP" in model_friendly_name
model_repo_url_prefix = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/hie5_zbqryf", "rot13")
if isinstance(model_download_list, str) and model_download_list == model_filename:
self.logger.debug(translations["single_model"].format(model_friendly_name=model_friendly_name))
self.model_friendly_name = model_friendly_name
try:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/MDX/{model_filename}", model_path)
except RuntimeError:
self.logger.warning(translations["not_found_model"])
self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{model_filename}", model_path)
self.print_uvr_vip_message()
self.logger.debug(translations["single_model_path"].format(model_path=model_path))
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
elif isinstance(model_download_list, dict):
this_model_matches_input_filename = False
for file_name, file_url in model_download_list.items():
if file_name == model_filename or file_url == model_filename:
self.logger.debug(translations["find_model"].format(model_filename=model_filename, model_friendly_name=model_friendly_name))
this_model_matches_input_filename = True
if this_model_matches_input_filename:
self.logger.debug(translations["find_models"].format(model_friendly_name=model_friendly_name))
self.model_friendly_name = model_friendly_name
self.print_uvr_vip_message()
for config_key, config_value in model_download_list.items():
self.logger.debug(f"{translations['find_path']}: {config_key} -> {config_value}")
if config_value.startswith("http"): self.download_file_if_not_exists(config_value, os.path.join(self.model_file_dir, config_key))
elif config_key.endswith(".ckpt"):
try:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_key}", os.path.join(self.model_file_dir, config_key))
except RuntimeError:
self.logger.warning(translations["not_found_model_warehouse"])
if model_filename.endswith(".yaml"):
self.logger.warning(translations["yaml_warning"].format(model_filename=model_filename))
self.logger.warning(translations["yaml_warning_2"].format(config_key=config_key))
self.logger.warning(translations["yaml_warning_3"])
model_filename = config_key
model_path = os.path.join(self.model_file_dir, f"{model_filename}")
yaml_config_filename = config_value
yaml_config_filepath = os.path.join(self.model_file_dir, yaml_config_filename)
try:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/mdx_c_configs/{yaml_config_filename}", yaml_config_filepath)
except RuntimeError:
self.logger.debug(translations["yaml_debug"])
else: self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_value}", os.path.join(self.model_file_dir, config_value))
self.logger.debug(translations["download_model_friendly"].format(model_friendly_name=model_friendly_name, model_path=model_path))
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
raise ValueError(translations["not_found_model_2"].format(model_filename=model_filename))
def load_model_data_from_yaml(self, yaml_config_filename):
model_data_yaml_filepath = os.path.join(self.model_file_dir, yaml_config_filename) if not os.path.exists(yaml_config_filename) else yaml_config_filename
self.logger.debug(translations["load_yaml"].format(model_data_yaml_filepath=model_data_yaml_filepath))
model_data = yaml.load(open(model_data_yaml_filepath, encoding="utf-8"), Loader=yaml.FullLoader)
self.logger.debug(translations["load_yaml_2"].format(model_data=model_data))
if "roformer" in model_data_yaml_filepath: model_data["is_roformer"] = True
return model_data
def load_model_data_using_hash(self, model_path):
self.logger.debug(translations["hash_md5"])
model_hash = self.get_model_hash(model_path)
self.logger.debug(translations["model_hash"].format(model_path=model_path, model_hash=model_hash))
mdx_model_data_path = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/zbqry_qngn.wfba", "rot13")
self.logger.debug(translations["mdx_data"].format(mdx_model_data_path=mdx_model_data_path))
response = requests.get(mdx_model_data_path)
response.raise_for_status()
mdx_model_data_object = response.json()
self.logger.debug(translations["load_mdx"])
if model_hash in mdx_model_data_object: model_data = mdx_model_data_object[model_hash]
else: raise ValueError(translations["model_not_support"].format(model_hash=model_hash))
self.logger.debug(translations["uvr_json"].format(model_hash=model_hash, model_data=model_data))
return model_data
def load_model(self, model_filename):
self.logger.info(translations["loading_model"].format(model_filename=model_filename))
load_model_start_time = time.perf_counter()
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
self.logger.debug(translations["download_model_friendly_2"].format(model_friendly_name=model_friendly_name, model_path=model_path))
if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path
common_params = {"logger": self.logger, "log_level": self.log_level, "torch_device": self.torch_device, "torch_device_cpu": self.torch_device_cpu, "torch_device_mps": self.torch_device_mps, "onnx_execution_provider": self.onnx_execution_provider, "model_name": model_filename.split(".")[0], "model_path": model_path, "model_data": self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path), "output_format": self.output_format, "output_bitrate": self.output_bitrate, "output_dir": self.output_dir, "normalization_threshold": self.normalization_threshold, "output_single_stem": self.output_single_stem, "invert_using_spec": self.invert_using_spec, "sample_rate": self.sample_rate}
separator_classes = {"MDX": "mdx_separator.MDXSeparator", "Demucs": "demucs_separator.DemucsSeparator"}
if model_type not in self.arch_specific_params or model_type not in separator_classes: raise ValueError(translations["model_type_not_support"].format(model_type=model_type))
if model_type == "Demucs" and sys.version_info < (3, 10): raise Exception(translations["demucs_not_support_python<3.10"])
self.logger.debug(f"{translations['import_module']} {model_type}: {separator_classes[model_type]}")
module_name, class_name = separator_classes[model_type].split(".")
separator_class = getattr(import_module(f"main.library.architectures.{module_name}"), class_name)
self.logger.debug(f"{translations['initialization']} {model_type}: {separator_class}")
self.model_instance = separator_class(common_config=common_params, arch_config=self.arch_specific_params[model_type])
self.logger.debug(translations["loading_model_success"])
self.logger.info(f"{translations['loading_model_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - load_model_start_time)))}")
def separate(self, audio_file_path):
self.logger.info(f"{translations['starting_separator']}: {audio_file_path}")
separate_start_time = time.perf_counter()
self.logger.debug(translations["normalization"].format(normalization_threshold=self.normalization_threshold))
output_files = self.model_instance.separate(audio_file_path)
self.model_instance.clear_gpu_cache()
self.model_instance.clear_file_specific_paths()
self.print_uvr_vip_message()
self.logger.debug(translations["separator_success_3"])
self.logger.info(f"{translations['separator_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - separate_start_time)))}")
return output_files
def download_model_and_data(self, model_filename):
self.logger.info(translations["loading_separator_model"].format(model_filename=model_filename))
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path
self.logger.info(translations["downloading_model"].format(model_type=model_type, model_friendly_name=model_friendly_name, model_path=model_path, model_data_dict_size=len(self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path)))) |