File size: 19,352 Bytes
e4d8df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import sys
import time
import yaml
import torch
import codecs
import hashlib
import logging
import platform
import warnings
import requests
import onnxruntime

from importlib import metadata, import_module

now_dir = os.getcwd()
sys.path.append(now_dir)

from main.configs.config import Config
translations = Config().translations

class Separator:
    def __init__(self, logger=logging.getLogger(__name__), log_level=logging.INFO, log_formatter=None, model_file_dir="assets/models/uvr5", output_dir=None, output_format="wav", output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": False}, demucs_params={"segment_size": "Default", "shifts": 2, "overlap": 0.25, "segments_enabled": True}):
        self.logger = logger
        self.log_level = log_level
        self.log_formatter = log_formatter
        self.log_handler = logging.StreamHandler()

        if self.log_formatter is None: self.log_formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(module)s - %(message)s")
        self.log_handler.setFormatter(self.log_formatter)

        if not self.logger.hasHandlers(): self.logger.addHandler(self.log_handler)
        if log_level > logging.DEBUG: warnings.filterwarnings("ignore")

        self.logger.info(translations["separator_info"].format(output_dir=output_dir, output_format=output_format))
        self.model_file_dir = model_file_dir

        if output_dir is None:
            output_dir = now_dir
            self.logger.info(translations["output_dir_is_none"])

        self.output_dir = output_dir

        os.makedirs(self.model_file_dir, exist_ok=True)
        os.makedirs(self.output_dir, exist_ok=True)

        self.output_format = output_format
        self.output_bitrate = output_bitrate

        if self.output_format is None: self.output_format = "wav"
        self.normalization_threshold = normalization_threshold
        if normalization_threshold <= 0 or normalization_threshold > 1: raise ValueError(translations[">0or=1"])

        self.output_single_stem = output_single_stem
        if output_single_stem is not None: self.logger.debug(translations["output_single"].format(output_single_stem=output_single_stem))

        self.invert_using_spec = invert_using_spec
        if self.invert_using_spec: self.logger.debug(translations["step2"])

        self.sample_rate = int(sample_rate)
        self.arch_specific_params = {"MDX": mdx_params, "Demucs": demucs_params}
        self.torch_device = None
        self.torch_device_cpu = None
        self.torch_device_mps = None
        self.onnx_execution_provider = None
        self.model_instance = None
        self.model_is_uvr_vip = False
        self.model_friendly_name = None
        self.setup_accelerated_inferencing_device()

    def setup_accelerated_inferencing_device(self):
        system_info = self.get_system_info()
        self.log_onnxruntime_packages()
        self.setup_torch_device(system_info)

    def get_system_info(self):
        os_name = platform.system()
        os_version = platform.version()
        self.logger.info(f"{translations['os']}: {os_name} {os_version}")
        system_info = platform.uname()
        self.logger.info(translations["platform_info"].format(system_info=system_info, node=system_info.node, release=system_info.release, machine=system_info.machine, processor=system_info.processor))
        python_version = platform.python_version()
        self.logger.info(f"{translations['name_ver'].format(name='python')}: {python_version}")
        pytorch_version = torch.__version__
        self.logger.info(f"{translations['name_ver'].format(name='pytorch')}: {pytorch_version}")

        return system_info

    def log_onnxruntime_packages(self):
        onnxruntime_gpu_package = self.get_package_distribution("onnxruntime-gpu")
        onnxruntime_cpu_package = self.get_package_distribution("onnxruntime")

        if onnxruntime_gpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='GPU')}: {onnxruntime_gpu_package.version}")
        if onnxruntime_cpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='CPU')}: {onnxruntime_cpu_package.version}")

    def setup_torch_device(self, system_info):
        hardware_acceleration_enabled = False
        ort_providers = onnxruntime.get_available_providers()
        self.torch_device_cpu = torch.device("cpu")

        if torch.cuda.is_available():
            self.configure_cuda(ort_providers)
            hardware_acceleration_enabled = True
        elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and system_info.processor == "arm":
            self.configure_mps(ort_providers)
            hardware_acceleration_enabled = True

        if not hardware_acceleration_enabled:
            self.logger.info(translations["running_in_cpu"])
            self.torch_device = self.torch_device_cpu
            self.onnx_execution_provider = ["CPUExecutionProvider"]

    def configure_cuda(self, ort_providers):
        self.logger.info(translations["running_in_cuda"])
        self.torch_device = torch.device("cuda")

        if "CUDAExecutionProvider" in ort_providers:
            self.logger.info(translations["onnx_have"].format(have='CUDAExecutionProvider'))
            self.onnx_execution_provider = ["CUDAExecutionProvider"]
        else: self.logger.warning(translations["onnx_not_have"].format(have='CUDAExecutionProvider'))

    def configure_mps(self, ort_providers):
        self.logger.info(translations["set_torch_mps"])
        self.torch_device_mps = torch.device("mps")
        self.torch_device = self.torch_device_mps

        if "CoreMLExecutionProvider" in ort_providers:
            self.logger.info(translations["onnx_have"].format(have='CoreMLExecutionProvider'))
            self.onnx_execution_provider = ["CoreMLExecutionProvider"]
        else: self.logger.warning(translations["onnx_not_have"].format(have='CoreMLExecutionProvider'))

    def get_package_distribution(self, package_name):
        try:
            return metadata.distribution(package_name)
        except metadata.PackageNotFoundError:
            self.logger.debug(translations["python_not_install"].format(package_name=package_name))
            return None

    def get_model_hash(self, model_path):
        self.logger.debug(translations["hash"].format(model_path=model_path))

        try:
            with open(model_path, "rb") as f:
                f.seek(-10000 * 1024, 2)
                return hashlib.md5(f.read()).hexdigest()
        except IOError as e:
            self.logger.error(translations["ioerror"].format(e=e))
            return hashlib.md5(open(model_path, "rb").read()).hexdigest()

    def download_file_if_not_exists(self, url, output_path):
        if os.path.isfile(output_path):
            self.logger.debug(translations["cancel_download"].format(output_path=output_path))
            return

        self.logger.debug(translations["download_model"].format(url=url, output_path=output_path))
        response = requests.get(url, stream=True, timeout=300)

        if response.status_code == 200:
            from tqdm import tqdm

            progress_bar = tqdm(total=int(response.headers.get("content-length", 0)), ncols=100, unit="byte")

            with open(output_path, "wb") as f:
                for chunk in response.iter_content(chunk_size=8192):
                    progress_bar.update(len(chunk))
                    f.write(chunk)

            progress_bar.close()
        else: raise RuntimeError(translations["download_error"].format(url=url, status_code=response.status_code))

    def print_uvr_vip_message(self):
        if self.model_is_uvr_vip:
            self.logger.warning(translations["vip_model"].format(model_friendly_name=self.model_friendly_name))
            self.logger.warning(translations["vip_print"])

    def list_supported_model_files(self):
        response = requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/hie_zbqryf.wfba", "rot13"))
        response.raise_for_status()
        model_downloads_list = response.json()
        self.logger.debug(translations["load_download_json"])

        return {"MDX": {**model_downloads_list["mdx_download_list"], **model_downloads_list["mdx_download_vip_list"]}, "Demucs": {key: value for key, value in model_downloads_list["demucs_download_list"].items() if key.startswith("Demucs v4")}}
    
    def download_model_files(self, model_filename):
        model_path = os.path.join(self.model_file_dir, model_filename)
        supported_model_files_grouped = self.list_supported_model_files()

        yaml_config_filename = None
        self.logger.debug(translations["search_model"].format(model_filename=model_filename))

        for model_type, model_list in supported_model_files_grouped.items():
            for model_friendly_name, model_download_list in model_list.items():
                self.model_is_uvr_vip = "VIP" in model_friendly_name
                model_repo_url_prefix = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/hie5_zbqryf", "rot13")

                if isinstance(model_download_list, str) and model_download_list == model_filename:
                    self.logger.debug(translations["single_model"].format(model_friendly_name=model_friendly_name))
                    self.model_friendly_name = model_friendly_name

                    try:
                        self.download_file_if_not_exists(f"{model_repo_url_prefix}/MDX/{model_filename}", model_path)
                    except RuntimeError:
                        self.logger.warning(translations["not_found_model"])
                        self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{model_filename}", model_path)

                    self.print_uvr_vip_message()
                    self.logger.debug(translations["single_model_path"].format(model_path=model_path))

                    return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
                elif isinstance(model_download_list, dict):
                    this_model_matches_input_filename = False

                    for file_name, file_url in model_download_list.items():
                        if file_name == model_filename or file_url == model_filename:
                            self.logger.debug(translations["find_model"].format(model_filename=model_filename, model_friendly_name=model_friendly_name))
                            this_model_matches_input_filename = True

                    if this_model_matches_input_filename:
                        self.logger.debug(translations["find_models"].format(model_friendly_name=model_friendly_name))
                        self.model_friendly_name = model_friendly_name
                        self.print_uvr_vip_message()

                        for config_key, config_value in model_download_list.items():
                            self.logger.debug(f"{translations['find_path']}: {config_key} -> {config_value}")

                            if config_value.startswith("http"): self.download_file_if_not_exists(config_value, os.path.join(self.model_file_dir, config_key))
                            elif config_key.endswith(".ckpt"):
                                try:
                                    self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_key}", os.path.join(self.model_file_dir, config_key))
                                except RuntimeError:
                                    self.logger.warning(translations["not_found_model_warehouse"])

                                if model_filename.endswith(".yaml"):
                                    self.logger.warning(translations["yaml_warning"].format(model_filename=model_filename))
                                    self.logger.warning(translations["yaml_warning_2"].format(config_key=config_key))
                                    self.logger.warning(translations["yaml_warning_3"])

                                    model_filename = config_key
                                    model_path = os.path.join(self.model_file_dir, f"{model_filename}")

                                yaml_config_filename = config_value
                                yaml_config_filepath = os.path.join(self.model_file_dir, yaml_config_filename)

                                try:
                                    self.download_file_if_not_exists(f"{model_repo_url_prefix}/mdx_c_configs/{yaml_config_filename}", yaml_config_filepath)
                                except RuntimeError:
                                    self.logger.debug(translations["yaml_debug"])
                            else: self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_value}", os.path.join(self.model_file_dir, config_value))

                        self.logger.debug(translations["download_model_friendly"].format(model_friendly_name=model_friendly_name, model_path=model_path))
                        return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename

        raise ValueError(translations["not_found_model_2"].format(model_filename=model_filename))

    def load_model_data_from_yaml(self, yaml_config_filename):
        model_data_yaml_filepath = os.path.join(self.model_file_dir, yaml_config_filename) if not os.path.exists(yaml_config_filename) else yaml_config_filename
        self.logger.debug(translations["load_yaml"].format(model_data_yaml_filepath=model_data_yaml_filepath))
        
        model_data = yaml.load(open(model_data_yaml_filepath, encoding="utf-8"), Loader=yaml.FullLoader)
        self.logger.debug(translations["load_yaml_2"].format(model_data=model_data))

        if "roformer" in model_data_yaml_filepath: model_data["is_roformer"] = True
        return model_data

    def load_model_data_using_hash(self, model_path):
        self.logger.debug(translations["hash_md5"])
        model_hash = self.get_model_hash(model_path)

        self.logger.debug(translations["model_hash"].format(model_path=model_path, model_hash=model_hash))
        mdx_model_data_path = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/zbqry_qngn.wfba", "rot13")
        self.logger.debug(translations["mdx_data"].format(mdx_model_data_path=mdx_model_data_path))

        response = requests.get(mdx_model_data_path)
        response.raise_for_status()

        mdx_model_data_object = response.json()
        self.logger.debug(translations["load_mdx"])

        if model_hash in mdx_model_data_object: model_data = mdx_model_data_object[model_hash]
        else: raise ValueError(translations["model_not_support"].format(model_hash=model_hash))

        self.logger.debug(translations["uvr_json"].format(model_hash=model_hash, model_data=model_data))
        return model_data

    def load_model(self, model_filename):
        self.logger.info(translations["loading_model"].format(model_filename=model_filename))
        load_model_start_time = time.perf_counter()
        model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
        self.logger.debug(translations["download_model_friendly_2"].format(model_friendly_name=model_friendly_name, model_path=model_path))

        if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path

        common_params = {"logger": self.logger, "log_level": self.log_level, "torch_device": self.torch_device, "torch_device_cpu": self.torch_device_cpu, "torch_device_mps": self.torch_device_mps, "onnx_execution_provider": self.onnx_execution_provider, "model_name": model_filename.split(".")[0], "model_path": model_path, "model_data": self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path), "output_format": self.output_format, "output_bitrate": self.output_bitrate, "output_dir": self.output_dir, "normalization_threshold": self.normalization_threshold, "output_single_stem": self.output_single_stem, "invert_using_spec": self.invert_using_spec, "sample_rate": self.sample_rate}
        separator_classes = {"MDX": "mdx_separator.MDXSeparator", "Demucs": "demucs_separator.DemucsSeparator"}

        if model_type not in self.arch_specific_params or model_type not in separator_classes: raise ValueError(translations["model_type_not_support"].format(model_type=model_type))
        if model_type == "Demucs" and sys.version_info < (3, 10): raise Exception(translations["demucs_not_support_python<3.10"])

        self.logger.debug(f"{translations['import_module']} {model_type}: {separator_classes[model_type]}")
        module_name, class_name = separator_classes[model_type].split(".")
        separator_class = getattr(import_module(f"main.library.architectures.{module_name}"), class_name)

        self.logger.debug(f"{translations['initialization']} {model_type}: {separator_class}")
        self.model_instance = separator_class(common_config=common_params, arch_config=self.arch_specific_params[model_type])

        self.logger.debug(translations["loading_model_success"])
        self.logger.info(f"{translations['loading_model_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - load_model_start_time)))}")

    def separate(self, audio_file_path):
        self.logger.info(f"{translations['starting_separator']}: {audio_file_path}")
        separate_start_time = time.perf_counter()

        self.logger.debug(translations["normalization"].format(normalization_threshold=self.normalization_threshold))
        output_files = self.model_instance.separate(audio_file_path)

        self.model_instance.clear_gpu_cache()
        self.model_instance.clear_file_specific_paths()

        self.print_uvr_vip_message()

        self.logger.debug(translations["separator_success_3"])
        self.logger.info(f"{translations['separator_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - separate_start_time)))}")
        return output_files

    def download_model_and_data(self, model_filename):
        self.logger.info(translations["loading_separator_model"].format(model_filename=model_filename))
        model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)

        if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path
        self.logger.info(translations["downloading_model"].format(model_type=model_type, model_friendly_name=model_friendly_name, model_path=model_path, model_data_dict_size=len(self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path))))