File size: 27,721 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import os
import sys
import math
import torch
import numpy as np
import torch.nn.functional as F
from torch.nn.utils import remove_weight_norm
from torch.utils.checkpoint import checkpoint
from torch.nn.utils.parametrizations import weight_norm
sys.path.append(os.getcwd())
from .modules import WaveNet
from .refinegan import RefineGANGenerator
from .mrf_hifigan import HiFiGANMRFGenerator
from .residuals import ResidualCouplingBlock, ResBlock, LRELU_SLOPE
from .commons import init_weights, slice_segments, rand_slice_segments, sequence_mask, convert_pad_shape
class Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = torch.nn.Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
self.ups_and_resblocks = torch.nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups_and_resblocks.append(weight_norm(torch.nn.ConvTranspose1d(upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2)))
ch = upsample_initial_channel // (2 ** (i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.ups_and_resblocks.append(ResBlock(ch, k, d))
self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups_and_resblocks.apply(init_weights)
if gin_channels != 0: self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g = None):
x = self.conv_pre(x)
if g is not None: x = x + self.cond(g)
resblock_idx = 0
for _ in range(self.num_upsamples):
x = self.ups_and_resblocks[resblock_idx](F.leaky_relu(x, LRELU_SLOPE))
resblock_idx += 1
xs = 0
for _ in range(self.num_kernels):
xs += self.ups_and_resblocks[resblock_idx](x)
resblock_idx += 1
x = xs / self.num_kernels
return torch.tanh(self.conv_post(F.leaky_relu(x)))
def __prepare_scriptable__(self):
for l in self.ups_and_resblocks:
for hook in l._forward_pre_hooks.values():
if (hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm"): torch.nn.utils.remove_weight_norm(l)
return self
def remove_weight_norm(self):
for l in self.ups_and_resblocks:
remove_weight_norm(l)
class SineGen(torch.nn.Module):
def __init__(self, samp_rate, harmonic_num=0, sine_amp=0.1, noise_std=0.003, voiced_threshold=0, flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
return torch.ones_like(f0) * (f0 > self.voiced_threshold)
def _f02sine(self, f0, upp):
rad = f0 / self.sampling_rate * torch.arange(1, upp + 1, dtype=f0.dtype, device=f0.device)
rad += F.pad((torch.fmod(rad[:, :-1, -1:].float() + 0.5, 1.0) - 0.5).cumsum(dim=1).fmod(1.0).to(f0), (0, 0, 1, 0), mode='constant')
rad = rad.reshape(f0.shape[0], -1, 1)
rad *= torch.arange(1, self.dim + 1, dtype=f0.dtype, device=f0.device).reshape(1, 1, -1)
rand_ini = torch.rand(1, 1, self.dim, device=f0.device)
rand_ini[..., 0] = 0
rad += rand_ini
return torch.sin(2 * np.pi * rad)
def forward(self, f0, upp):
with torch.no_grad():
f0 = f0.unsqueeze(-1)
sine_waves = self._f02sine(f0, upp) * self.sine_amp
uv = F.interpolate(self._f02uv(f0).transpose(2, 1), scale_factor=float(upp), mode="nearest").transpose(2, 1)
sine_waves = sine_waves * uv + ((uv * self.noise_std + (1 - uv) * self.sine_amp / 3) * torch.randn_like(sine_waves))
return sine_waves
class SourceModuleHnNSF(torch.nn.Module):
def __init__(self, sample_rate, harmonic_num=0, sine_amp=0.1, add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
self.l_sin_gen = SineGen(sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod)
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x, upsample_factor = 1):
return self.l_tanh(self.l_linear(self.l_sin_gen(x, upsample_factor).to(dtype=self.l_linear.weight.dtype)))
class GeneratorNSF(torch.nn.Module):
def __init__(self, initial_channel, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels, sr, checkpointing = False):
super(GeneratorNSF, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.upp = int(np.prod(upsample_rates))
self.f0_upsamp = torch.nn.Upsample(scale_factor=self.upp)
self.m_source = SourceModuleHnNSF(sample_rate=sr, harmonic_num=0)
self.conv_pre = torch.nn.Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
self.checkpointing = checkpointing
self.ups = torch.nn.ModuleList()
self.upsampler = torch.nn.ModuleList()
self.noise_convs = torch.nn.ModuleList()
channels = [upsample_initial_channel // (2 ** (i + 1)) for i in range(len(upsample_rates))]
stride_f0s = [upsample_rates[1] * upsample_rates[2] * upsample_rates[3], upsample_rates[2] * upsample_rates[3], upsample_rates[3], 1]
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
if self.upp == 441:
self.upsampler.append(torch.nn.Upsample(scale_factor=u, mode="linear"))
self.ups.append(weight_norm(torch.nn.Conv1d(upsample_initial_channel // (2**i), channels[i], kernel_size=1)))
self.noise_convs.append(torch.nn.Conv1d(in_channels=1, out_channels=channels[i], kernel_size = 1))
else:
self.upsampler.append(torch.nn.Identity())
self.ups.append(weight_norm(torch.nn.ConvTranspose1d(upsample_initial_channel // (2**i), channels[i], kernel_size=k, stride=u, padding=(k - u) // 2)))
self.noise_convs.append(torch.nn.Conv1d(1, channels[i], kernel_size=stride_f0s[i] * 2 if stride_f0s[i] > 1 else 1, stride=stride_f0s[i], padding=(stride_f0s[i] // 2 if stride_f0s[i] > 1 else 0)))
self.resblocks = torch.nn.ModuleList([ResBlock(channels[i], k, d) for i in range(len(self.ups)) for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes)])
self.conv_post = torch.nn.Conv1d(channels[-1], 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0: self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, f0, g = None):
har_source = self.m_source(f0, self.upp).transpose(1, 2)
x = self.conv_pre(x)
if g is not None: x += self.cond(g)
for i, (ups, upr, noise_convs) in enumerate(zip(self.ups, self.upsampler, self.noise_convs)):
x = F.leaky_relu(x, LRELU_SLOPE)
if self.training and self.checkpointing:
if self.upp == 441: x = upr(x)
x = checkpoint(ups, x, use_reentrant=False)
else:
if self.upp == 441: x = upr(x)
x = ups(x)
h = noise_convs(har_source)
if self.upp == 441: h = torch.nn.functional.interpolate(h, size=x.shape[-1], mode="linear")
x += h
def resblock_forward(x, blocks):
return sum(block(x) for block in blocks) / len(blocks)
blocks = self.resblocks[i * self.num_kernels:(i + 1) * self.num_kernels]
x = checkpoint(resblock_forward, x, blocks, use_reentrant=False) if self.training and self.checkpointing else resblock_forward(x, blocks)
return torch.tanh(self.conv_post(F.leaky_relu(x)))
def remove_weight_norm(self):
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class LayerNorm(torch.nn.Module):
def __init__(self, channels, eps=1e-5, onnx=False):
super().__init__()
self.channels = channels
self.eps = eps
self.onnx = onnx
self.gamma = torch.nn.Parameter(torch.ones(channels))
self.beta = torch.nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
return (F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) if self.onnx else F.layer_norm(x, (x.size(-1),), self.gamma, self.beta, self.eps)).transpose(1, -1)
class MultiHeadAttention(torch.nn.Module):
def __init__(self, channels, out_channels, n_heads, p_dropout=0.0, window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False, onnx=False):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.onnx = onnx
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
self.drop = torch.nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = torch.nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
self.emb_rel_v = torch.nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
torch.nn.init.xavier_uniform_(self.conv_q.weight)
torch.nn.init.xavier_uniform_(self.conv_k.weight)
torch.nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
return self.conv_o(x)
def attention(self, query, key, value, mask=None):
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
assert (t_s == t_t), "(t_s == t_t)"
scores = scores + self._relative_position_to_absolute_position(self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), self._get_relative_embeddings(self.emb_rel_k, t_s, onnx=self.onnx)), onnx=self.onnx)
if self.proximal_bias:
assert t_s == t_t, "t_s == t_t"
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert (t_s == t_t), "(t_s == t_t)"
scores = scores.masked_fill((torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)) == 0, -1e4)
p_attn = self.drop(F.softmax(scores, dim=-1))
output = torch.matmul(p_attn, value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3))
if self.window_size is not None: output = output + self._matmul_with_relative_values(self._absolute_position_to_relative_position(p_attn, onnx=self.onnx), self._get_relative_embeddings(self.emb_rel_v, t_s, onnx=self.onnx))
return (output.transpose(2, 3).contiguous().view(b, d, t_t)), p_attn
def _matmul_with_relative_values(self, x, y):
return torch.matmul(x, y.unsqueeze(0))
def _matmul_with_relative_keys(self, x, y):
return torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
def _get_relative_embeddings(self, relative_embeddings, length, onnx=False):
if onnx:
pad_length = torch.clamp(length - (self.window_size + 1), min=0)
slice_start_position = torch.clamp((self.window_size + 1) - length, min=0)
return (F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) if pad_length > 0 else relative_embeddings)[:, slice_start_position:(slice_start_position + 2 * length - 1)]
else:
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
return (F.pad(relative_embeddings, convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) if pad_length > 0 else relative_embeddings)[:, slice_start_position:(slice_start_position + 2 * length - 1)]
def _relative_position_to_absolute_position(self, x, onnx=False):
batch, heads, length, _ = x.size()
return (F.pad(F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0]).view([batch, heads, length * 2 * length]), [0, length - 1, 0, 0, 0, 0]).view([batch, heads, length + 1, 2 * length - 1]) if onnx else F.pad(F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])).view([batch, heads, length * 2 * length]), convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])).view([batch, heads, length + 1, 2 * length - 1]))[:, :, :length, length - 1 :]
def _absolute_position_to_relative_position(self, x, onnx=False):
batch, heads, length, _ = x.size()
return (F.pad(F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0]).view([batch, heads, length*length + length * (length - 1)]), [length, 0, 0, 0, 0, 0]).view([batch, heads, length, 2 * length]) if onnx else F.pad(F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])).view([batch, heads, length**2 + length * (length - 1)]), convert_pad_shape([[0, 0], [0, 0], [length, 0]])).view([batch, heads, length, 2 * length]))[:, :, :, 1:]
def _attention_bias_proximal(self, length):
r = torch.arange(length, dtype=torch.float32)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs((torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)))), 0), 0)
class FFN(torch.nn.Module):
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0, activation=None, causal=False, onnx=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
self.onnx = onnx
self.padding = self._causal_padding if causal else self._same_padding
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = torch.nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
return self.conv_2(self.padding(self.drop(((x * torch.sigmoid(1.702 * x)) if self.activation == "gelu" else torch.relu(x))) * x_mask)) * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1: return x
return F.pad(x, [self.kernel_size - 1, 0, 0, 0, 0, 0]) if self.onnx else F.pad(x, convert_pad_shape([[0, 0], [0, 0], [(self.kernel_size - 1), 0]]))
def _same_padding(self, x):
if self.kernel_size == 1: return x
return F.pad(x, [(self.kernel_size - 1) // 2, self.kernel_size // 2, 0, 0, 0, 0]) if self.onnx else F.pad(x, convert_pad_shape([[0, 0], [0, 0], [((self.kernel_size - 1) // 2), (self.kernel_size // 2)]]))
class Encoder(torch.nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, window_size=10, onnx=False, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = torch.nn.Dropout(p_dropout)
self.attn_layers = torch.nn.ModuleList()
self.norm_layers_1 = torch.nn.ModuleList()
self.ffn_layers = torch.nn.ModuleList()
self.norm_layers_2 = torch.nn.ModuleList()
for _ in range(self.n_layers):
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size, onnx=onnx))
self.norm_layers_1.append(LayerNorm(hidden_channels, onnx=onnx))
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, onnx=onnx))
self.norm_layers_2.append(LayerNorm(hidden_channels, onnx=onnx))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
x = self.norm_layers_1[i](x + self.drop(self.attn_layers[i](x, x, attn_mask)))
x = self.norm_layers_2[i](x + self.drop(self.ffn_layers[i](x, x_mask)))
return x * x_mask
class TextEncoder(torch.nn.Module):
def __init__(self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, embedding_dim, f0=True, onnx=False):
super(TextEncoder, self).__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = float(p_dropout)
self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels)
self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True)
if f0: self.emb_pitch = torch.nn.Embedding(256, hidden_channels)
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), onnx=onnx)
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, phone, pitch, lengths):
x = torch.transpose(self.lrelu(((self.emb_phone(phone) if pitch is None else (self.emb_phone(phone) + self.emb_pitch(pitch))) * math.sqrt(self.hidden_channels))), 1, -1)
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
m, logs = torch.split((self.proj(self.encoder(x * x_mask, x_mask)) * x_mask), self.out_channels, dim=1)
return m, logs, x_mask
class PosteriorEncoder(torch.nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0):
super(PosteriorEncoder, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WaveNet(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g = None):
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
m, logs = torch.split((self.proj(self.enc((self.pre(x) * x_mask), x_mask, g=g)) * x_mask), self.out_channels, dim=1)
return ((m + torch.randn_like(m) * torch.exp(logs)) * x_mask), m, logs, x_mask
def remove_weight_norm(self):
self.enc.remove_weight_norm()
class Synthesizer(torch.nn.Module):
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, use_f0, text_enc_hidden_dim=768, vocoder="Default", checkpointing=False, onnx=False, **kwargs):
super(Synthesizer, self).__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = float(p_dropout)
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.spk_embed_dim = spk_embed_dim
self.use_f0 = use_f0
self.enc_p = TextEncoder(inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), text_enc_hidden_dim, f0=use_f0, onnx=onnx)
if use_f0:
if vocoder == "RefineGAN": self.dec = RefineGANGenerator(sample_rate=sr, upsample_rates=upsample_rates, num_mels=inter_channels, checkpointing=checkpointing)
elif vocoder == "MRF HiFi-GAN": self.dec = HiFiGANMRFGenerator(in_channel=inter_channels, upsample_initial_channel=upsample_initial_channel, upsample_rates=upsample_rates, upsample_kernel_sizes=upsample_kernel_sizes, resblock_kernel_sizes=resblock_kernel_sizes, resblock_dilations=resblock_dilation_sizes, gin_channels=gin_channels, sample_rate=sr, harmonic_num=8, checkpointing=checkpointing)
else: self.dec = GeneratorNSF(inter_channels, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, sr=sr, checkpointing=checkpointing)
else: self.dec = Generator(inter_channels, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
self.emb_g = torch.nn.Embedding(self.spk_embed_dim, gin_channels)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm()
@torch.jit.ignore
def forward(self, phone, phone_lengths, pitch = None, pitchf = None, y = None, y_lengths = None, ds = None):
g = self.emb_g(ds).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
if y is not None:
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
return (self.dec(z_slice, slice_segments(pitchf, ids_slice, self.segment_size, 2), g=g) if self.use_f0 else self.dec(z_slice, g=g)), ids_slice, x_mask, y_mask, (z, self.flow(z, y_mask, g=g), m_p, logs_p, m_q, logs_q)
else: return None, None, x_mask, None, (None, None, m_p, logs_p, None, None)
@torch.jit.export
def infer(self, phone, phone_lengths, pitch = None, nsff0 = None, sid = None, rate = None):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if rate is not None:
assert isinstance(rate, torch.Tensor)
head = int(z_p.shape[2] * (1.0 - rate.item()))
z_p = z_p[:, :, head:]
x_mask = x_mask[:, :, head:]
if self.use_f0: nsff0 = nsff0[:, head:]
if self.use_f0:
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, nsff0, g=g)
else:
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)
class SynthesizerONNX(Synthesizer):
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, use_f0, text_enc_hidden_dim=768, vocoder="Default", checkpointing=False, **kwargs):
super().__init__(spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, use_f0, text_enc_hidden_dim, vocoder, checkpointing, True)
self.speaker_map = None
def remove_weight_norm(self):
self.dec.remove_weight_norm()
self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm()
def construct_spkmixmap(self, n_speaker):
self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
for i in range(n_speaker):
self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
self.speaker_map = self.speaker_map.unsqueeze(0)
def forward(self, phone, phone_lengths, g=None, rnd=None, pitch=None, nsff0=None, max_len=None):
g = self.emb_g(g).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
return self.dec((self.flow(z_p, x_mask, g=g, reverse=True) * x_mask)[:, :, :max_len], nsff0, g=g) if self.use_f0 else self.dec((self.flow(z_p, x_mask, g=g, reverse=True) * x_mask)[:, :, :max_len], g=g) |