File size: 10,383 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import torch
import librosa
import functools
import scipy.stats
import numpy as np
CENTS_PER_BIN, MAX_FMAX, PITCH_BINS, SAMPLE_RATE, WINDOW_SIZE = 20, 2006, 360, 16000, 1024
class Crepe(torch.nn.Module):
def __init__(self, model='full'):
super().__init__()
if model == 'full':
in_channels = [1, 1024, 128, 128, 128, 256]
out_channels = [1024, 128, 128, 128, 256, 512]
self.in_features = 2048
elif model == 'large':
in_channels = [1, 768, 96, 96, 96, 192]
out_channels = [768, 96, 96, 96, 192, 384]
self.in_features = 1536
elif model == 'medium':
in_channels = [1, 512, 64, 64, 64, 128]
out_channels = [512, 64, 64, 64, 128, 256]
self.in_features = 1024
elif model == 'small':
in_channels = [1, 256, 32, 32, 32, 64]
out_channels = [256, 32, 32, 32, 64, 128]
self.in_features = 512
elif model == 'tiny':
in_channels = [1, 128, 16, 16, 16, 32]
out_channels = [128, 16, 16, 16, 32, 64]
self.in_features = 256
kernel_sizes = [(512, 1)] + 5 * [(64, 1)]
strides = [(4, 1)] + 5 * [(1, 1)]
batch_norm_fn = functools.partial(torch.nn.BatchNorm2d, eps=0.0010000000474974513, momentum=0.0)
self.conv1 = torch.nn.Conv2d(in_channels=in_channels[0], out_channels=out_channels[0], kernel_size=kernel_sizes[0], stride=strides[0])
self.conv1_BN = batch_norm_fn(num_features=out_channels[0])
self.conv2 = torch.nn.Conv2d(in_channels=in_channels[1], out_channels=out_channels[1], kernel_size=kernel_sizes[1], stride=strides[1])
self.conv2_BN = batch_norm_fn(num_features=out_channels[1])
self.conv3 = torch.nn.Conv2d(in_channels=in_channels[2], out_channels=out_channels[2], kernel_size=kernel_sizes[2], stride=strides[2])
self.conv3_BN = batch_norm_fn(num_features=out_channels[2])
self.conv4 = torch.nn.Conv2d(in_channels=in_channels[3], out_channels=out_channels[3], kernel_size=kernel_sizes[3], stride=strides[3])
self.conv4_BN = batch_norm_fn(num_features=out_channels[3])
self.conv5 = torch.nn.Conv2d(in_channels=in_channels[4], out_channels=out_channels[4], kernel_size=kernel_sizes[4], stride=strides[4])
self.conv5_BN = batch_norm_fn(num_features=out_channels[4])
self.conv6 = torch.nn.Conv2d(in_channels=in_channels[5], out_channels=out_channels[5], kernel_size=kernel_sizes[5], stride=strides[5])
self.conv6_BN = batch_norm_fn(num_features=out_channels[5])
self.classifier = torch.nn.Linear(in_features=self.in_features, out_features=PITCH_BINS)
def forward(self, x, embed=False):
x = self.embed(x)
if embed: return x
return torch.sigmoid(self.classifier(self.layer(x, self.conv6, self.conv6_BN).permute(0, 2, 1, 3).reshape(-1, self.in_features)))
def embed(self, x):
x = x[:, None, :, None]
return self.layer(self.layer(self.layer(self.layer(self.layer(x, self.conv1, self.conv1_BN, (0, 0, 254, 254)), self.conv2, self.conv2_BN), self.conv3, self.conv3_BN), self.conv4, self.conv4_BN), self.conv5, self.conv5_BN)
def layer(self, x, conv, batch_norm, padding=(0, 0, 31, 32)):
return torch.nn.functional.max_pool2d(batch_norm(torch.nn.functional.relu(conv(torch.nn.functional.pad(x, padding)))), (2, 1), (2, 1))
def viterbi(logits):
if not hasattr(viterbi, 'transition'):
xx, yy = np.meshgrid(range(360), range(360))
transition = np.maximum(12 - abs(xx - yy), 0)
viterbi.transition = transition / transition.sum(axis=1, keepdims=True)
with torch.no_grad():
probs = torch.nn.functional.softmax(logits, dim=1)
bins = torch.tensor(np.array([librosa.sequence.viterbi(sequence, viterbi.transition).astype(np.int64) for sequence in probs.cpu().numpy()]), device=probs.device)
return bins, bins_to_frequency(bins)
def predict(audio, sample_rate, hop_length=None, fmin=50, fmax=MAX_FMAX, model='full', return_periodicity=False, batch_size=None, device='cpu', pad=True, providers=None, onnx=False):
results = []
if onnx:
import onnxruntime as ort
sess_options = ort.SessionOptions()
sess_options.log_severity_level = 3
session = ort.InferenceSession(os.path.join("assets", "models", "predictors", f"crepe_{model}.onnx"), sess_options=sess_options, providers=providers)
for frames in preprocess(audio, sample_rate, hop_length, batch_size, device, pad):
result = postprocess(torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: frames.cpu().numpy()})[0].transpose(1, 0)[None]), fmin, fmax, return_periodicity)
results.append((result[0], result[1]) if isinstance(result, tuple) else result)
del session
if return_periodicity:
pitch, periodicity = zip(*results)
return torch.cat(pitch, 1), torch.cat(periodicity, 1)
return torch.cat(results, 1)
else:
with torch.no_grad():
for frames in preprocess(audio, sample_rate, hop_length, batch_size, device, pad):
result = postprocess(infer(frames, model, device, embed=False).reshape(audio.size(0), -1, PITCH_BINS).transpose(1, 2), fmin, fmax, return_periodicity)
results.append((result[0].to(audio.device), result[1].to(audio.device)) if isinstance(result, tuple) else result.to(audio.device))
if return_periodicity:
pitch, periodicity = zip(*results)
return torch.cat(pitch, 1), torch.cat(periodicity, 1)
return torch.cat(results, 1)
def bins_to_frequency(bins):
cents = CENTS_PER_BIN * bins + 1997.3794084376191
return 10 * 2 ** ((cents + cents.new_tensor(scipy.stats.triang.rvs(c=0.5, loc=-CENTS_PER_BIN, scale=2 * CENTS_PER_BIN, size=cents.size()))) / 1200)
def frequency_to_bins(frequency, quantize_fn=torch.floor):
return quantize_fn(((1200 * torch.log2(frequency / 10)) - 1997.3794084376191) / CENTS_PER_BIN).int()
def infer(frames, model='full', device='cpu', embed=False):
if not hasattr(infer, 'model') or not hasattr(infer, 'capacity') or (hasattr(infer, 'capacity') and infer.capacity != model): load_model(device, model)
infer.model = infer.model.to(device)
return infer.model(frames, embed=embed)
def load_model(device, capacity='full'):
infer.capacity = capacity
infer.model = Crepe(capacity)
infer.model.load_state_dict(torch.load(os.path.join("assets", "models", "predictors", f"crepe_{capacity}.pth"), map_location=device))
infer.model = infer.model.to(torch.device(device))
infer.model.eval()
def postprocess(probabilities, fmin=0, fmax=MAX_FMAX, return_periodicity=False):
probabilities = probabilities.detach()
probabilities[:, :frequency_to_bins(torch.tensor(fmin))] = -float('inf')
probabilities[:, frequency_to_bins(torch.tensor(fmax), torch.ceil):] = -float('inf')
bins, pitch = viterbi(probabilities)
if not return_periodicity: return pitch
return pitch, periodicity(probabilities, bins)
def preprocess(audio, sample_rate, hop_length=None, batch_size=None, device='cpu', pad=True):
hop_length = sample_rate // 100 if hop_length is None else hop_length
if sample_rate != SAMPLE_RATE:
audio = torch.tensor(librosa.resample(audio.detach().cpu().numpy().squeeze(0), orig_sr=sample_rate, target_sr=SAMPLE_RATE, res_type="soxr_vhq"), device=audio.device).unsqueeze(0)
hop_length = int(hop_length * SAMPLE_RATE / sample_rate)
if pad:
total_frames = 1 + int(audio.size(1) // hop_length)
audio = torch.nn.functional.pad(audio, (WINDOW_SIZE // 2, WINDOW_SIZE // 2))
else: total_frames = 1 + int((audio.size(1) - WINDOW_SIZE) // hop_length)
batch_size = total_frames if batch_size is None else batch_size
for i in range(0, total_frames, batch_size):
frames = torch.nn.functional.unfold(audio[:, None, None, max(0, i * hop_length):min(audio.size(1), (i + batch_size - 1) * hop_length + WINDOW_SIZE)], kernel_size=(1, WINDOW_SIZE), stride=(1, hop_length))
frames = frames.transpose(1, 2).reshape(-1, WINDOW_SIZE).to(device)
frames -= frames.mean(dim=1, keepdim=True)
frames /= torch.max(torch.tensor(1e-10, device=frames.device), frames.std(dim=1, keepdim=True))
yield frames
def periodicity(probabilities, bins):
probs_stacked = probabilities.transpose(1, 2).reshape(-1, PITCH_BINS)
periodicity = probs_stacked.gather(1, bins.reshape(-1, 1).to(torch.int64))
return periodicity.reshape(probabilities.size(0), probabilities.size(2))
def mean(signals, win_length=9):
assert signals.dim() == 2
signals = signals.unsqueeze(1)
mask = ~torch.isnan(signals)
padding = win_length // 2
ones_kernel = torch.ones(signals.size(1), 1, win_length, device=signals.device)
avg_pooled = torch.nn.functional.conv1d(torch.where(mask, signals, torch.zeros_like(signals)), ones_kernel, stride=1, padding=padding) / torch.nn.functional.conv1d(mask.float(), ones_kernel, stride=1, padding=padding).clamp(min=1)
avg_pooled[avg_pooled == 0] = float("nan")
return avg_pooled.squeeze(1)
def median(signals, win_length):
assert signals.dim() == 2
signals = signals.unsqueeze(1)
mask = ~torch.isnan(signals)
padding = win_length // 2
x = torch.nn.functional.pad(torch.where(mask, signals, torch.zeros_like(signals)), (padding, padding), mode="reflect")
mask = torch.nn.functional.pad(mask.float(), (padding, padding), mode="constant", value=0)
x = x.unfold(2, win_length, 1)
mask = mask.unfold(2, win_length, 1)
x = x.contiguous().view(x.size()[:3] + (-1,))
mask = mask.contiguous().view(mask.size()[:3] + (-1,))
x_sorted, _ = torch.sort(torch.where(mask.bool(), x.float(), float("inf")).to(x), dim=-1)
median_pooled = x_sorted.gather(-1, ((mask.sum(dim=-1) - 1) // 2).clamp(min=0).unsqueeze(-1).long()).squeeze(-1)
median_pooled[torch.isinf(median_pooled)] = float("nan")
return median_pooled.squeeze(1) |