File size: 54,671 Bytes
e4d8df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
import os
import io
import math
import torch
import librosa

import numpy as np
import soundfile as sf
import onnxruntime as ort
import torch.nn.functional as F

from torch import nn, einsum
from functools import partial
from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
from torchaudio.transforms import Resample
from einops import rearrange, repeat, pack, unpack
from torch.nn.utils.parametrizations import weight_norm

from librosa.filters import mel as librosa_mel_fn

os.environ["LRU_CACHE_CAPACITY"] = "3"

def exists(val):
    return val is not None

def default(value, d):
    return value if exists(value) else d

def max_neg_value(tensor):
    return -torch.finfo(tensor.dtype).max

def empty(tensor):
    return tensor.numel() == 0

def cast_tuple(val):
    return (val,) if not isinstance(val, tuple) else val

def l2norm(tensor):
    return F.normalize(tensor, dim = -1).type(tensor.dtype)

def decrypt_model(input_path):
    with open(input_path, "rb") as f:
        data = f.read()

    with open(os.path.join("main", "configs", "decrypt.bin"), "rb") as f:
        key = f.read()

    return io.BytesIO(unpad(AES.new(key, AES.MODE_CBC, data[:16]).decrypt(data[16:]), AES.block_size)).read()

def l2_regularization(model, l2_alpha):
    l2_loss = []

    for module in model.modules():
        if type(module) is nn.Conv2d: l2_loss.append((module.weight**2).sum() / 2.0)

    return l2_alpha * sum(l2_loss)

def pad_to_multiple(tensor, multiple, dim=-1, value=0):
    seqlen = tensor.shape[dim]
    m = seqlen / multiple

    if m.is_integer(): return False, tensor
    return True, F.pad(tensor, (*((0,) * (-1 - dim) * 2), 0, (math.ceil(m) * multiple - seqlen)), value = value)

def look_around(x, backward = 1, forward = 0, pad_value = -1, dim = 2):
    t = x.shape[1]
    dims = (len(x.shape) - dim) * (0, 0)

    padded_x = F.pad(x, (*dims, backward, forward), value = pad_value)
    return torch.cat([padded_x[:, ind:(ind + t), ...] for ind in range(forward + backward + 1)], dim = dim)

def rotate_half(x):
    x1, x2 = rearrange(x, 'b ... (r d) -> b ... r d', r = 2).unbind(dim = -2)
    return torch.cat((-x2, x1), dim = -1)

def apply_rotary_pos_emb(q, k, freqs, scale = 1):
    q_len = q.shape[-2]
    q_freqs = freqs[..., -q_len:, :]
    inv_scale = scale ** -1

    if scale.ndim == 2: scale = scale[-q_len:, :]

    q = (q * q_freqs.cos() * scale) + (rotate_half(q) * q_freqs.sin() * scale)
    k = (k * freqs.cos() * inv_scale) + (rotate_half(k) * freqs.sin() * inv_scale)

    return q, k

def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)

def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
    unstructured_block = torch.randn((cols, cols), device=device)

    q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
    q, r = map(lambda t: t.to(device), (q, r))

    if qr_uniform_q:
        d = torch.diag(r, 0)
        q *= d.sign()

    return q.t()

def linear_attention(q, k, v):
    return torch.einsum("...ed,...nd->...ne", k, q) if v is None else torch.einsum("...de,...nd,...n->...ne", torch.einsum("...nd,...ne->...de", k, v), q, 1.0 / (torch.einsum("...nd,...d->...n", q, k.sum(dim=-2).type_as(q)) + 1e-8))

def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None):
    nb_full_blocks = int(nb_rows / nb_columns)
    block_list = []

    for _ in range(nb_full_blocks):
        block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device))

    remaining_rows = nb_rows - nb_full_blocks * nb_columns
    if remaining_rows > 0: block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)[:remaining_rows])

    if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
    elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device=device)
    else: raise ValueError(f"{scaling} != 0, 1")

    return torch.diag(multiplier) @ torch.cat(block_list)

def calc_same_padding(kernel_size):
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)

def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None):
    b, h, *_ = data.shape
    
    data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
    ratio = projection_matrix.shape[0] ** -0.5

    data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), repeat(projection_matrix, "j d -> b h j d", b=b, h=h).type_as(data))
    diag_data = ((torch.sum(data**2, dim=-1) / 2.0) * (data_normalizer**2)).unsqueeze(dim=-1)

    return (ratio * (torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) if is_query else ratio * (torch.exp(data_dash - diag_data + eps))).type_as(data)

def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
    try:
        data, sample_rate = sf.read(full_path, always_2d=True)
    except Exception as e:
        print(f"{full_path}: {e}")

        if return_empty_on_exception: return [], sample_rate or target_sr or 48000
        else: raise

    data = data[:, 0] if len(data.shape) > 1 else data
    assert len(data) > 2

    max_mag = (-np.iinfo(data.dtype).min if np.issubdtype(data.dtype, np.integer) else max(np.amax(data), -np.amin(data)))
    data = torch.FloatTensor(data.astype(np.float32)) / ((2**31) + 1 if max_mag > (2**15) else ((2**15) + 1 if max_mag > 1.01 else 1.0))

    if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception: return [], sample_rate or target_sr or 48000

    if target_sr is not None and sample_rate != target_sr:
        data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sample_rate, target_sr=target_sr))
        sample_rate = target_sr

    return data, sample_rate

def torch_interp(x, xp, fp):
    sort_idx = torch.argsort(xp)
    
    xp = xp[sort_idx]
    fp = fp[sort_idx]

    right_idxs = torch.searchsorted(xp, x).clamp(max=len(xp) - 1)
    left_idxs = (right_idxs - 1).clamp(min=0)

    x_left = xp[left_idxs]
    y_left = fp[left_idxs]

    interp_vals = y_left + ((x - x_left) * (fp[right_idxs] - y_left) / (xp[right_idxs] - x_left))
    interp_vals[x < xp[0]] = fp[0]
    interp_vals[x > xp[-1]] = fp[-1]

    return interp_vals

def batch_interp_with_replacement_detach(uv, f0):
    result = f0.clone()

    for i in range(uv.shape[0]):
        interp_vals = torch_interp(torch.where(uv[i])[-1], torch.where(~uv[i])[-1], f0[i][~uv[i]]).detach()
        result[i][uv[i]] = interp_vals
        
    return result

def spawn_model(args):
    return CFNaiveMelPE(input_channels=catch_none_args_must(args.mel.num_mels, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.mel.num_mels is None"), out_dims=catch_none_args_must(args.model.out_dims, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.out_dims is None"), hidden_dims=catch_none_args_must(args.model.hidden_dims, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.hidden_dims is None"), n_layers=catch_none_args_must(args.model.n_layers, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.n_layers is None"), n_heads=catch_none_args_must(args.model.n_heads, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.n_heads is None"), f0_max=catch_none_args_must(args.model.f0_max, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.f0_max is None"), f0_min=catch_none_args_must(args.model.f0_min, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.f0_min is None"), use_fa_norm=catch_none_args_must(args.model.use_fa_norm, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.use_fa_norm is None"), conv_only=catch_none_args_opti(args.model.conv_only, default=False, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.conv_only is None"), conv_dropout=catch_none_args_opti(args.model.conv_dropout, default=0.0, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.conv_dropout is None"), atten_dropout=catch_none_args_opti(args.model.atten_dropout, default=0.0, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.atten_dropout is None"), use_harmonic_emb=catch_none_args_opti(args.model.use_harmonic_emb, default=False, func_name="torchfcpe.tools.spawn_cf_naive_mel_pe", warning_str="args.model.use_harmonic_emb is None"))

def catch_none_args_must(x, func_name, warning_str):
    level = "ERROR"

    if x is None:
        print(f'  [{level}] {warning_str}')
        print(f'  [{level}] > {func_name}')
        raise ValueError(f'  [{level}] {warning_str}')
    else: return x

def catch_none_args_opti(x, default, func_name, warning_str=None, level='WARN'):
    return default if x is None else x

def spawn_wav2mel(args, device = None):
    _type = args.mel.type

    if (str(_type).lower() == 'none') or (str(_type).lower() == 'default'): _type = 'default'
    elif str(_type).lower() == 'stft': _type = 'stft'

    wav2mel = Wav2MelModule(sr=catch_none_args_opti(args.mel.sr, default=16000, func_name='torchfcpe.tools.spawn_wav2mel', warning_str='args.mel.sr is None'), n_mels=catch_none_args_opti(args.mel.num_mels, default=128, func_name='torchfcpe.tools.spawn_wav2mel', warning_str='args.mel.num_mels is None'), n_fft=catch_none_args_opti(args.mel.n_fft, default=1024, func_name='torchfcpe.tools.spawn_wav2mel', warning_str='args.mel.n_fft is None'), win_size=catch_none_args_opti(args.mel.win_size, default=1024, func_name='torchfcpe.tools.spawn_wav2mel', warning_str='args.mel.win_size is None'), hop_length=catch_none_args_opti(args.mel.hop_size, default=160, func_name='torchfcpe.tools.spawn_wav2mel', warning_str='args.mel.hop_size is None'), fmin=catch_none_args_opti(args.mel.fmin, default=0, func_name='torchfcpe.tools.spawn_wav2mel', warning_str='args.mel.fmin is None'), fmax=catch_none_args_opti(args.mel.fmax, default=8000, func_name='torchfcpe.tools.spawn_wav2mel', warning_str='args.mel.fmax is None'), clip_val=1e-05, mel_type=_type)
    device = catch_none_args_opti(device, default='cpu', func_name='torchfcpe.tools.spawn_wav2mel', warning_str='.device is None')
    
    return wav2mel.to(torch.device(device))

def ensemble_f0(f0s, key_shift_list, tta_uv_penalty):
    device = f0s.device
    f0s = f0s / (torch.pow(2, torch.tensor(key_shift_list, device=device).to(device).unsqueeze(0).unsqueeze(0) / 12))

    notes = torch.log2(f0s / 440) * 12 + 69
    notes[notes < 0] = 0

    uv_penalty = tta_uv_penalty**2
    dp = torch.zeros_like(notes, device=device)

    backtrack = torch.zeros_like(notes, device=device).long()
    dp[:, 0, :] = (notes[:, 0, :] <= 0) * uv_penalty

    for t in range(1, notes.size(1)):
        penalty = torch.zeros([notes.size(0), notes.size(2), notes.size(2)], device=device)
        t_uv = notes[:, t, :] <= 0
        penalty += uv_penalty * t_uv.unsqueeze(1)

        t1_uv = notes[:, t - 1, :] <= 0
        l2 = torch.pow((notes[:, t - 1, :].unsqueeze(-1) - notes[:, t, :].unsqueeze(1)) * (~t1_uv).unsqueeze(-1) * (~t_uv).unsqueeze(1), 2) - 0.5
        l2 = l2 * (l2 > 0)

        penalty += l2
        penalty += t1_uv.unsqueeze(-1) * (~t_uv).unsqueeze(1) * uv_penalty * 2

        min_value, min_indices = torch.min(dp[:, t - 1, :].unsqueeze(-1) + penalty, dim=1)
        dp[:, t, :] = min_value
        backtrack[:, t, :] = min_indices

    t = f0s.size(1) - 1
    f0_result = torch.zeros_like(f0s[:, :, 0], device=device)
    min_indices = torch.argmin(dp[:, t, :], dim=-1)

    for i in range(0, t + 1):
        f0_result[:, t - i] = f0s[:, t - i, min_indices]
        min_indices = backtrack[:, t - i, min_indices]

    return f0_result.unsqueeze(-1)

class LocalAttention(nn.Module):
    def __init__(self, window_size, causal = False, look_backward = 1, look_forward = None, dropout = 0., shared_qk = False, rel_pos_emb_config = None, dim = None, autopad = False, exact_windowsize = False, scale = None, use_rotary_pos_emb = True, use_xpos = False, xpos_scale_base = None):
        super().__init__()
        look_forward = default(look_forward, 0 if causal else 1)
        assert not (causal and look_forward > 0)
        self.scale = scale
        self.window_size = window_size
        self.autopad = autopad
        self.exact_windowsize = exact_windowsize
        self.causal = causal
        self.look_backward = look_backward
        self.look_forward = look_forward
        self.dropout = nn.Dropout(dropout)
        self.shared_qk = shared_qk
        self.rel_pos = None
        self.use_xpos = use_xpos

        if use_rotary_pos_emb and (exists(rel_pos_emb_config) or exists(dim)): 
            if exists(rel_pos_emb_config): dim = rel_pos_emb_config[0]
            self.rel_pos = SinusoidalEmbeddings(dim, use_xpos = use_xpos, scale_base = default(xpos_scale_base, window_size // 2))

    def forward(self, q, k, v, mask = None, input_mask = None, attn_bias = None, window_size = None):
        mask = default(mask, input_mask)
        assert not (exists(window_size) and not self.use_xpos)

        _, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, default(window_size, self.window_size), self.causal, self.look_backward, self.look_forward, self.shared_qk
        (q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v))

        if autopad:
            orig_seq_len = q.shape[1]
            (_, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v))

        b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype
        scale = default(self.scale, dim_head ** -0.5)

        assert (n % window_size) == 0
        windows = n // window_size

        if shared_qk: k = l2norm(k)

        seq = torch.arange(n, device = device)
        b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size)
        bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v))

        bq = bq * scale
        look_around_kwargs = dict(backward =  look_backward, forward =  look_forward, pad_value = pad_value)

        bk = look_around(bk, **look_around_kwargs)
        bv = look_around(bv, **look_around_kwargs)

        if exists(self.rel_pos):
            pos_emb, xpos_scale = self.rel_pos(bk)
            bq, bk = apply_rotary_pos_emb(bq, bk, pos_emb, scale = xpos_scale)

        bq_t = b_t
        bq_k = look_around(b_t, **look_around_kwargs)

        bq_t = rearrange(bq_t, '... i -> ... i 1')
        bq_k = rearrange(bq_k, '... j -> ... 1 j')

        pad_mask = bq_k == pad_value
        sim = einsum('b h i e, b h j e -> b h i j', bq, bk)

        if exists(attn_bias):
            heads = attn_bias.shape[0]
            assert (b % heads) == 0

            attn_bias = repeat(attn_bias, 'h i j -> (b h) 1 i j', b = b // heads)
            sim = sim + attn_bias

        mask_value = max_neg_value(sim)

        if shared_qk:
            self_mask = bq_t == bq_k
            sim = sim.masked_fill(self_mask, -5e4)
            del self_mask

        if causal:
            causal_mask = bq_t < bq_k
            if self.exact_windowsize: causal_mask = causal_mask | (bq_t > (bq_k + (self.window_size * self.look_backward)))
            sim = sim.masked_fill(causal_mask, mask_value)
            del causal_mask

        sim = sim.masked_fill(((bq_k - (self.window_size * self.look_forward)) > bq_t) | (bq_t > (bq_k + (self.window_size * self.look_backward))) | pad_mask, mask_value) if not causal and self.exact_windowsize else sim.masked_fill(pad_mask, mask_value)

        if exists(mask):
            batch = mask.shape[0]
            assert (b % batch) == 0

            h = b // mask.shape[0]
            if autopad: _, mask = pad_to_multiple(mask, window_size, dim = -1, value = False)

            mask = repeat(rearrange(look_around(rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size), **{**look_around_kwargs, 'pad_value': False}), '... j -> ... 1 j'), 'b ... -> (b h) ...', h = h)
            sim = sim.masked_fill(~mask, mask_value)

            del mask

        out = rearrange(einsum('b h i j, b h j e -> b h i e', self.dropout(sim.softmax(dim = -1)), bv), 'b w n d -> b (w n) d')
        if autopad: out = out[:, :orig_seq_len, :]

        out, *_ = unpack(out, packed_shape, '* n d')
        return out
    
class SinusoidalEmbeddings(nn.Module):
    def __init__(self, dim, scale_base = None, use_xpos = False, theta = 10000):
        super().__init__()
        inv_freq = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)
        self.use_xpos = use_xpos
        self.scale_base = scale_base
        assert not (use_xpos and not exists(scale_base))
        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
        self.register_buffer('scale', scale, persistent = False)

    def forward(self, x):
        seq_len, device = x.shape[-2], x.device
        t = torch.arange(seq_len, device = x.device).type_as(self.inv_freq)

        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs =  torch.cat((freqs, freqs), dim = -1)

        if not self.use_xpos: return freqs, torch.ones(1, device = device)

        power = (t - (seq_len // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')

        return freqs, torch.cat((scale, scale), dim = -1)

class STFT:
    def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
        self.target_sr = sr
        self.n_mels = n_mels
        self.n_fft = n_fft
        self.win_size = win_size
        self.hop_length = hop_length
        self.fmin = fmin
        self.fmax = fmax
        self.clip_val = clip_val
        self.mel_basis = {}
        self.hann_window = {}

    def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
        n_fft = self.n_fft
        win_size = self.win_size
        hop_length = self.hop_length
        fmax = self.fmax
        factor = 2 ** (keyshift / 12)
        win_size_new = int(np.round(win_size * factor))
        hop_length_new = int(np.round(hop_length * speed))
        mel_basis = self.mel_basis if not train else {}
        hann_window = self.hann_window if not train else {}
        mel_basis_key = str(fmax) + "_" + str(y.device)

        if mel_basis_key not in mel_basis: mel_basis[mel_basis_key] = torch.from_numpy(librosa_mel_fn(sr=self.target_sr, n_fft=n_fft, n_mels=self.n_mels, fmin=self.fmin, fmax=fmax)).float().to(y.device)
        keyshift_key = str(keyshift) + "_" + str(y.device)
        if keyshift_key not in hann_window: hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)

        pad_left = (win_size_new - hop_length_new) // 2
        pad_right = max((win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left)

        spec = torch.stft(torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode="reflect" if pad_right < y.size(-1) else "constant").squeeze(1), int(np.round(n_fft * factor)), hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True)
        spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))

        if keyshift != 0:
            size = n_fft // 2 + 1
            resize = spec.size(1)
            spec = (F.pad(spec, (0, 0, 0, size - resize)) if resize < size else spec[:, :size, :]) * win_size / win_size_new

        return dynamic_range_compression_torch(torch.matmul(mel_basis[mel_basis_key], spec), clip_val=self.clip_val)

    def __call__(self, audiopath):
        audio, _ = load_wav_to_torch(audiopath, target_sr=self.target_sr)
        return self.get_mel(audio.unsqueeze(0)).squeeze(0)

class PCmer(nn.Module):
    def __init__(self, num_layers, num_heads, dim_model, dim_keys, dim_values, residual_dropout, attention_dropout):
        super().__init__()
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dim_model = dim_model
        self.dim_values = dim_values
        self.dim_keys = dim_keys
        self.residual_dropout = residual_dropout
        self.attention_dropout = attention_dropout
        self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])

    def forward(self, phone, mask=None):
        for layer in self._layers:
            phone = layer(phone, mask)

        return phone

class _EncoderLayer(nn.Module):
    def __init__(self, parent):
        super().__init__()
        self.conformer = ConformerConvModule_LEGACY(parent.dim_model)
        self.norm = nn.LayerNorm(parent.dim_model)
        self.dropout = nn.Dropout(parent.residual_dropout)
        self.attn = SelfAttention(dim=parent.dim_model, heads=parent.num_heads, causal=False)

    def forward(self, phone, mask=None):
        phone = phone + (self.attn(self.norm(phone), mask=mask))
        return phone + (self.conformer(phone))

class ConformerNaiveEncoder(nn.Module):
    def __init__(self, num_layers, num_heads, dim_model, use_norm = False, conv_only = False, conv_dropout = 0, atten_dropout = 0):
        super().__init__()
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dim_model = dim_model
        self.use_norm = use_norm
        self.residual_dropout = 0.1  
        self.attention_dropout = 0.1  
        self.encoder_layers = nn.ModuleList([CFNEncoderLayer(dim_model, num_heads, use_norm, conv_only, conv_dropout, atten_dropout) for _ in range(num_layers)])

    def forward(self, x, mask=None):
        for (_, layer) in enumerate(self.encoder_layers):
            x = layer(x, mask)

        return x 

class CFNaiveMelPE(nn.Module):
    def __init__(self, input_channels, out_dims, hidden_dims = 512, n_layers = 6, n_heads = 8, f0_max = 1975.5, f0_min = 32.70, use_fa_norm = False, conv_only = False, conv_dropout = 0, atten_dropout = 0, use_harmonic_emb = False):
        super().__init__()
        self.input_channels = input_channels
        self.out_dims = out_dims
        self.hidden_dims = hidden_dims
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.f0_max = f0_max
        self.f0_min = f0_min
        self.use_fa_norm = use_fa_norm
        self.residual_dropout = 0.1  
        self.attention_dropout = 0.1  
        self.harmonic_emb = nn.Embedding(9, hidden_dims) if use_harmonic_emb else None
        self.input_stack = nn.Sequential(nn.Conv1d(input_channels, hidden_dims, 3, 1, 1), nn.GroupNorm(4, hidden_dims), nn.LeakyReLU(), nn.Conv1d(hidden_dims, hidden_dims, 3, 1, 1))
        self.net = ConformerNaiveEncoder(num_layers=n_layers, num_heads=n_heads, dim_model=hidden_dims, use_norm=use_fa_norm, conv_only=conv_only, conv_dropout=conv_dropout, atten_dropout=atten_dropout)
        self.norm = nn.LayerNorm(hidden_dims)
        self.output_proj = weight_norm(nn.Linear(hidden_dims, out_dims))
        self.cent_table_b = torch.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], out_dims).detach()
        self.register_buffer("cent_table", self.cent_table_b)
        self.gaussian_blurred_cent_mask_b = (1200 * torch.log2(torch.Tensor([self.f0_max / 10.])))[0].detach()
        self.register_buffer("gaussian_blurred_cent_mask", self.gaussian_blurred_cent_mask_b)

    def forward(self, x, _h_emb=None):
        x = self.input_stack(x.transpose(-1, -2)).transpose(-1, -2)
        if self.harmonic_emb is not None: x = x + self.harmonic_emb(torch.LongTensor([0]).to(x.device)) if _h_emb is None else x + self.harmonic_emb(torch.LongTensor([int(_h_emb)]).to(x.device))

        return torch.sigmoid(self.output_proj(self.norm(self.net(x))))

    @torch.no_grad()
    def latent2cents_decoder(self, y, threshold = 0.05, mask = True):
        B, N, _ = y.size()
        ci = self.cent_table[None, None, :].expand(B, N, -1)
        rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True)  

        if mask:
            confident = torch.max(y, dim=-1, keepdim=True)[0]
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= threshold] = float("-INF")
            rtn = rtn * confident_mask

        return rtn  

    @torch.no_grad()
    def latent2cents_local_decoder(self, y, threshold = 0.05, mask = True):
        B, N, _ = y.size()
        ci = self.cent_table[None, None, :].expand(B, N, -1)
        confident, max_index = torch.max(y, dim=-1, keepdim=True)

        local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4)
        local_argmax_index[local_argmax_index < 0] = 0
        local_argmax_index[local_argmax_index >= self.out_dims] = self.out_dims - 1

        y_l = torch.gather(y, -1, local_argmax_index)
        rtn = torch.sum(torch.gather(ci, -1, local_argmax_index) * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) 

        if mask:
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= threshold] = float("-INF")

            rtn = rtn * confident_mask

        return rtn  

    @torch.no_grad()
    def infer(self, mel, decoder = "local_argmax", threshold = 0.05):
        latent = self.forward(mel)

        if decoder == "argmax": cents = self.latent2cents_local_decoder
        elif decoder == "local_argmax": cents = self.latent2cents_local_decoder

        return self.cent_to_f0(cents(latent, threshold=threshold))  

    @torch.no_grad()
    def cent_to_f0(self, cent: torch.Tensor) -> torch.Tensor:
        return 10 * 2 ** (cent / 1200)

    @torch.no_grad()
    def f0_to_cent(self, f0):
        return 1200 * torch.log2(f0 / 10)

class CFNEncoderLayer(nn.Module):
    def __init__(self, dim_model, num_heads = 8, use_norm = False, conv_only = False, conv_dropout = 0, atten_dropout = 0):
        super().__init__()

        self.conformer = nn.Sequential(ConformerConvModule(dim_model), nn.Dropout(conv_dropout)) if conv_dropout > 0 else ConformerConvModule(dim_model)
        self.norm = nn.LayerNorm(dim_model)

        self.dropout = nn.Dropout(0.1)  
        self.attn = SelfAttention(dim=dim_model, heads=num_heads, causal=False, use_norm=use_norm, dropout=atten_dropout) if not conv_only else None

    def forward(self, x, mask=None):
        if self.attn is not None: x = x + (self.attn(self.norm(x), mask=mask))
        return x + (self.conformer(x)) 

class Swish(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()

class Transpose(nn.Module):
    def __init__(self, dims):
        super().__init__()
        assert len(dims) == 2, "dims == 2"

        self.dims = dims

    def forward(self, x):
        return x.transpose(*self.dims)

class GLU(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        out, gate = x.chunk(2, dim=self.dim)
        return out * gate.sigmoid()

class DepthWiseConv1d_LEGACY(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size, padding):
        super().__init__()
        self.padding = padding
        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)

    def forward(self, x):
        return self.conv(F.pad(x, self.padding))

class DepthWiseConv1d(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size, padding, groups):
        super().__init__()
        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size=kernel_size, padding=padding, groups=groups)

    def forward(self, x):
        return self.conv(x)

class ConformerConvModule_LEGACY(nn.Module):
    def __init__(self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0):
        super().__init__()
        inner_dim = dim * expansion_factor
        self.net = nn.Sequential(nn.LayerNorm(dim), Transpose((1, 2)), nn.Conv1d(dim, inner_dim * 2, 1), GLU(dim=1), DepthWiseConv1d_LEGACY(inner_dim, inner_dim, kernel_size=kernel_size, padding=(calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0))), Swish(), nn.Conv1d(inner_dim, dim, 1), Transpose((1, 2)), nn.Dropout(dropout))

    def forward(self, x):
        return self.net(x)

class ConformerConvModule(nn.Module):
    def __init__(self, dim, expansion_factor=2, kernel_size=31, dropout=0):
        super().__init__()
        inner_dim = dim * expansion_factor

        self.net = nn.Sequential(nn.LayerNorm(dim), Transpose((1, 2)), nn.Conv1d(dim, inner_dim * 2, 1), nn.GLU(dim=1), DepthWiseConv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=calc_same_padding(kernel_size)[0], groups=inner_dim), nn.SiLU(), nn.Conv1d(inner_dim, dim, 1), Transpose((1, 2)), nn.Dropout(dropout))

    def forward(self, x):
        return self.net(x)

class FastAttention(nn.Module):
    def __init__(self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False):
        super().__init__()
        nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
        self.dim_heads = dim_heads
        self.nb_features = nb_features
        self.ortho_scaling = ortho_scaling
        self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q)
        projection_matrix = self.create_projection()
        self.register_buffer("projection_matrix", projection_matrix)
        self.generalized_attention = generalized_attention
        self.kernel_fn = kernel_fn
        self.no_projection = no_projection
        self.causal = causal

    @torch.no_grad()
    def redraw_projection_matrix(self):
        projections = self.create_projection()
        self.projection_matrix.copy_(projections)

        del projections

    def forward(self, q, k, v):
        if self.no_projection: q, k = q.softmax(dim=-1), (torch.exp(k) if self.causal else k.softmax(dim=-2)) 
        else:
            create_kernel = partial(softmax_kernel, projection_matrix=self.projection_matrix, device=q.device)
            q, k = create_kernel(q, is_query=True), create_kernel(k, is_query=False)

        attn_fn = linear_attention if not self.causal else self.causal_linear_fn
        return attn_fn(q, k, None) if v is None else attn_fn(q, k, v)

class SelfAttention(nn.Module):
    def __init__(self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False):
        super().__init__()
        assert dim % heads == 0
        dim_head = default(dim_head, dim // heads)
        inner_dim = dim_head * heads
        self.fast_attention = FastAttention(dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection)
        self.heads = heads
        self.global_heads = heads - local_heads
        self.local_attn = (LocalAttention(window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads)) if local_heads > 0 else None)
        self.to_q = nn.Linear(dim, inner_dim)
        self.to_k = nn.Linear(dim, inner_dim)
        self.to_v = nn.Linear(dim, inner_dim)
        self.to_out = nn.Linear(inner_dim, dim)
        self.dropout = nn.Dropout(dropout)

    @torch.no_grad()
    def redraw_projection_matrix(self):
        self.fast_attention.redraw_projection_matrix()

    def forward(self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs):
        _, _, _, h, gh = *x.shape, self.heads, self.global_heads
        cross_attend = exists(context)

        context = default(context, x)
        context_mask = default(context_mask, mask) if not cross_attend else context_mask

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (self.to_q(x), self.to_k(context), self.to_v(context)))
        (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))

        attn_outs = []

        if not empty(q):
            if exists(context_mask): v.masked_fill_(~context_mask[:, None, :, None], 0.0)

            if cross_attend: pass  
            else: out = self.fast_attention(q, k, v)

            attn_outs.append(out)

        if not empty(lq):
            assert (not cross_attend), "not cross_attend"

            out = self.local_attn(lq, lk, lv, input_mask=mask)
            attn_outs.append(out)

        return self.dropout(self.to_out(rearrange(torch.cat(attn_outs, dim=1), "b h n d -> b n (h d)")))

class HannWindow(torch.nn.Module):
    def __init__(self, win_size):
        super().__init__()
        self.register_buffer('window', torch.hann_window(win_size), persistent=False)

    def forward(self):
        return self.window

class FCPE_LEGACY(nn.Module):
    def __init__(self, input_channel=128, out_dims=360, n_layers=12, n_chans=512, use_siren=False, use_full=False, loss_mse_scale=10, loss_l2_regularization=False, loss_l2_regularization_scale=1, loss_grad1_mse=False, loss_grad1_mse_scale=1, f0_max=1975.5, f0_min=32.70, confidence=False, threshold=0.05, use_input_conv=True):
        super().__init__()
        if use_siren: raise ValueError("Siren not support")
        if use_full: raise ValueError("Model full not support")

        self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
        self.loss_l2_regularization = (loss_l2_regularization if (loss_l2_regularization is not None) else False)
        self.loss_l2_regularization_scale = (loss_l2_regularization_scale if (loss_l2_regularization_scale is not None) else 1)
        self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
        self.loss_grad1_mse_scale = (loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1)
        self.f0_max = f0_max if (f0_max is not None) else 1975.5
        self.f0_min = f0_min if (f0_min is not None) else 32.70
        self.confidence = confidence if (confidence is not None) else False
        self.threshold = threshold if (threshold is not None) else 0.05
        self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
        self.cent_table_b = torch.Tensor(np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], out_dims))
        self.register_buffer("cent_table", self.cent_table_b)
        self.stack = nn.Sequential(nn.Conv1d(input_channel, n_chans, 3, 1, 1), nn.GroupNorm(4, n_chans), nn.LeakyReLU(), nn.Conv1d(n_chans, n_chans, 3, 1, 1))
        self.decoder = PCmer(num_layers=n_layers, num_heads=8, dim_model=n_chans, dim_keys=n_chans, dim_values=n_chans, residual_dropout=0.1, attention_dropout=0.1)
        self.norm = nn.LayerNorm(n_chans)
        self.n_out = out_dims
        self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))

    def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax"):
        if cdecoder == "argmax": self.cdecoder = self.cents_decoder
        elif cdecoder == "local_argmax": self.cdecoder = self.cents_local_decoder

        x = torch.sigmoid(self.dense_out(self.norm(self.decoder((self.stack(mel.transpose(1, 2)).transpose(1, 2) if self.use_input_conv else mel)))))

        if not infer:
            loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, self.gaussian_blurred_cent(self.f0_to_cent(gt_f0)))
            if self.loss_l2_regularization: loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
            x = loss_all

        if infer:
            x = self.cent_to_f0(self.cdecoder(x))
            x = (1 + x / 700).log() if not return_hz_f0 else x

        return x

    def cents_decoder(self, y, mask=True):
        B, N, _ = y.size()
        rtn = torch.sum(self.cent_table[None, None, :].expand(B, N, -1) * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True)

        if mask:
            confident = torch.max(y, dim=-1, keepdim=True)[0]
            confident_mask = torch.ones_like(confident)

            confident_mask[confident <= self.threshold] = float("-INF")
            rtn = rtn * confident_mask

        return (rtn, confident) if self.confidence else rtn

    def cents_local_decoder(self, y, mask=True):
        B, N, _ = y.size()

        confident, max_index = torch.max(y, dim=-1, keepdim=True)
        local_argmax_index = torch.clamp(torch.arange(0, 9).to(max_index.device) + (max_index - 4), 0, self.n_out - 1)

        y_l = torch.gather(y, -1, local_argmax_index)
        rtn = torch.sum(torch.gather(self.cent_table[None, None, :].expand(B, N, -1), -1, local_argmax_index) * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True)

        if mask:
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= self.threshold] = float("-INF")

            rtn = rtn * confident_mask

        return (rtn, confident) if self.confidence else rtn

    def cent_to_f0(self, cent):
        return 10.0 * 2 ** (cent / 1200.0)

    def f0_to_cent(self, f0):
        return 1200.0 * torch.log2(f0 / 10.0)

    def gaussian_blurred_cent(self, cents):
        B, N, _ = cents.size()
        return torch.exp(-torch.square(self.cent_table[None, None, :].expand(B, N, -1) - cents) / 1250) * (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0))).float()

class InferCFNaiveMelPE(torch.nn.Module):
    def __init__(self, args, state_dict):
        super().__init__()
        self.wav2mel = spawn_wav2mel(args, device="cpu")
        self.model = spawn_model(args)
        self.model.load_state_dict(state_dict)
        self.model.eval()
        self.args_dict = dict(args)
        self.register_buffer("tensor_device_marker", torch.tensor(1.0).float(), persistent=False)

    def forward(self, wav, sr, decoder_mode = "local_argmax", threshold = 0.006, key_shifts = [0]):
        with torch.no_grad():
            mels = rearrange(torch.stack([self.wav2mel(wav.to(self.tensor_device_marker.device), sr, keyshift=keyshift) for keyshift in key_shifts], -1), "B T C K -> (B K) T C")
            f0s = rearrange(self.model.infer(mels, decoder=decoder_mode, threshold=threshold), "(B K) T 1 -> B T (K 1)", K=len(key_shifts))

        return f0s 

    def infer(self, wav, sr, decoder_mode = "local_argmax", threshold = 0.006, f0_min = None, f0_max = None, interp_uv = False, output_interp_target_length = None, return_uv = False, test_time_augmentation = False, tta_uv_penalty = 12.0, tta_key_shifts = [0, -12, 12], tta_use_origin_uv=False):
        if test_time_augmentation:
            assert len(tta_key_shifts) > 0
            flag = 0

            if tta_use_origin_uv:
                if 0 not in tta_key_shifts:
                    flag = 1
                    tta_key_shifts.append(0)

            tta_key_shifts.sort(key=lambda x: (x if x >= 0 else -x / 2))
            f0s = self.__call__(wav, sr, decoder_mode, threshold, tta_key_shifts)
            f0 = ensemble_f0(f0s[:, :, flag:], tta_key_shifts[flag:], tta_uv_penalty)

            f0_for_uv = f0s[:, :, [0]] if tta_use_origin_uv else f0
        else:
            f0 = self.__call__(wav, sr, decoder_mode, threshold)
            f0_for_uv = f0

        if f0_min is None: f0_min = self.args_dict["model"]["f0_min"]

        uv = (f0_for_uv < f0_min).type(f0_for_uv.dtype)
        f0 = f0 * (1 - uv)

        if interp_uv: f0 = batch_interp_with_replacement_detach(uv.squeeze(-1).bool(), f0.squeeze(-1)).unsqueeze(-1)
        if f0_max is not None: f0[f0 > f0_max] = f0_max
        if output_interp_target_length is not None: f0 = torch.nn.functional.interpolate(f0.transpose(1, 2), size=int(output_interp_target_length), mode="nearest").transpose(1, 2)

        if return_uv: return f0, torch.nn.functional.interpolate(uv.transpose(1, 2), size=int(output_interp_target_length), mode="nearest").transpose(1, 2)
        else: return f0

class FCPEInfer_LEGACY:
    def __init__(self, model_path, device=None, dtype=torch.float32, providers=None, onnx=False):
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.wav2mel = Wav2Mel(device=device, dtype=dtype)
        self.device = device
        self.dtype = dtype
        self.onnx = onnx

        if self.onnx:
            sess_options = ort.SessionOptions()
            sess_options.log_severity_level = 3
            
            self.model = ort.InferenceSession(decrypt_model(model_path), sess_options=sess_options, providers=providers)
        else:
            ckpt = torch.load(model_path, map_location=torch.device(self.device))
            self.args = DotDict(ckpt["config"])

            model = FCPE_LEGACY(input_channel=self.args.model.input_channel, out_dims=self.args.model.out_dims, n_layers=self.args.model.n_layers, n_chans=self.args.model.n_chans, use_siren=self.args.model.use_siren, use_full=self.args.model.use_full, loss_mse_scale=self.args.loss.loss_mse_scale, loss_l2_regularization=self.args.loss.loss_l2_regularization, loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, loss_grad1_mse=self.args.loss.loss_grad1_mse, loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, f0_max=self.args.model.f0_max, f0_min=self.args.model.f0_min, confidence=self.args.model.confidence)
            model.to(self.device).to(self.dtype)
            model.load_state_dict(ckpt["model"])

            model.eval()
            self.model = model

    @torch.no_grad()
    def __call__(self, audio, sr, threshold=0.05):
        if not self.onnx: self.model.threshold = threshold
        else: self.wav2mel = Wav2Mel(device=self.device, dtype=self.dtype)
        return (torch.as_tensor(self.model.run([self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: self.wav2mel(audio=audio[None, :], sample_rate=sr).to(self.dtype).detach().cpu().numpy(), self.model.get_inputs()[1].name: np.array(threshold, dtype=np.float32)})[0], dtype=self.dtype, device=self.device) if self.onnx else self.model(mel=self.wav2mel(audio=audio[None, :], sample_rate=sr).to(self.dtype), infer=True, return_hz_f0=True))

class FCPEInfer:
    def __init__(self, model_path, device=None, dtype=torch.float32, providers=None, onnx=False):
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.dtype = dtype
        self.onnx = onnx

        if self.onnx:
            sess_options = ort.SessionOptions()
            sess_options.log_severity_level = 3

            self.model = ort.InferenceSession(decrypt_model(model_path), sess_options=sess_options, providers=providers)
        else:
            ckpt = torch.load(model_path, map_location=torch.device(device))
            ckpt["config_dict"]["model"]["conv_dropout"] = ckpt["config_dict"]["model"]["atten_dropout"] = 0.0
            self.args = DotDict(ckpt["config_dict"])
            
            model = InferCFNaiveMelPE(self.args, ckpt["model"])
            model = model.to(device)

            model.eval()
            self.model = model

    @torch.no_grad()
    def __call__(self, audio, sr, threshold=0.05, f0_min=50, f0_max=1100, p_len=None):
        if self.onnx: self.wav2mel = Wav2Mel(device=self.device, dtype=self.dtype)
        return (torch.as_tensor(self.model.run([self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: self.wav2mel(audio=audio[None, :], sample_rate=sr).to(self.dtype).detach().cpu().numpy(), self.model.get_inputs()[1].name: np.array(threshold, dtype=np.float32)})[0], dtype=self.dtype, device=self.device) if self.onnx else self.model.infer(audio[None, :], sr, threshold=threshold, f0_min=f0_min, f0_max=f0_max, output_interp_target_length=p_len))

class MelModule(torch.nn.Module):
    def __init__(self, sr, n_mels, n_fft, win_size, hop_length, fmin = None, fmax = None, clip_val = 1e-5, out_stft = False):
        super().__init__()
        if fmin is None: fmin = 0
        if fmax is None: fmax = sr / 2

        self.target_sr = sr
        self.n_mels = n_mels
        self.n_fft = n_fft
        self.win_size = win_size
        self.hop_length = hop_length
        self.fmin = fmin
        self.fmax = fmax
        self.clip_val = clip_val

        self.register_buffer('mel_basis', torch.tensor(librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)).float(), persistent=False)
        self.hann_window = torch.nn.ModuleDict()
        self.out_stft = out_stft

    @torch.no_grad()
    def __call__(self, y, key_shift = 0, speed = 1, center = False, no_cache_window = False):
        n_fft = self.n_fft
        win_size = self.win_size
        hop_length = self.hop_length
        clip_val = self.clip_val

        factor = 2 ** (key_shift / 12)
        n_fft_new = int(np.round(n_fft * factor))
        win_size_new = int(np.round(win_size * factor))
        hop_length_new = int(np.round(hop_length * speed))

        y = y.squeeze(-1)

        if torch.min(y) < -1: print('[error with torchfcpe.mel_extractor.MelModule] min ', torch.min(y))
        if torch.max(y) > 1: print('[error with torchfcpe.mel_extractor.MelModule] max ', torch.max(y))

        key_shift_key = str(key_shift)
        if not no_cache_window:
            if key_shift_key in self.hann_window: hann_window = self.hann_window[key_shift_key]
            else:
                hann_window = HannWindow(win_size_new).to(self.mel_basis.device)
                self.hann_window[key_shift_key] = hann_window

            hann_window_tensor = hann_window()
        else: hann_window_tensor = torch.hann_window(win_size_new).to(self.mel_basis.device)

        pad_left = (win_size_new - hop_length_new) // 2
        pad_right = max((win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left)

        mode = 'reflect' if pad_right < y.size(-1) else 'constant'

        spec = torch.stft(torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode).squeeze(1), n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window_tensor, center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
        spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-9)

        if key_shift != 0:
            size = n_fft // 2 + 1
            resize = spec.size(1)

            if resize < size: spec = F.pad(spec, (0, 0, 0, size - resize))
            spec = spec[:, :size, :] * win_size / win_size_new

        spec = spec[:, :512, :] if self.out_stft else torch.matmul(self.mel_basis, spec)

        return dynamic_range_compression_torch(spec, clip_val=clip_val).transpose(-1, -2)

class Wav2MelModule(torch.nn.Module):
    def __init__(self, sr, n_mels, n_fft, win_size, hop_length, fmin = None, fmax = None, clip_val = 1e-5, mel_type="default"):
        super().__init__()
        if fmin is None: fmin = 0
        if fmax is None: fmax = sr / 2

        self.sampling_rate = sr
        self.n_mels = n_mels
        self.n_fft = n_fft
        self.win_size = win_size
        self.hop_size = hop_length
        self.fmin = fmin
        self.fmax = fmax
        self.clip_val = clip_val

        self.register_buffer('tensor_device_marker', torch.tensor(1.0).float(), persistent=False)
        self.resample_kernel = torch.nn.ModuleDict()

        if mel_type == "default": self.mel_extractor = MelModule(sr, n_mels, n_fft, win_size, hop_length, fmin, fmax, clip_val, out_stft=False)
        elif mel_type == "stft": self.mel_extractor = MelModule(sr, n_mels, n_fft, win_size, hop_length, fmin, fmax, clip_val, out_stft=True)

        self.mel_type = mel_type

    @torch.no_grad()
    def __call__(self, audio, sample_rate, keyshift = 0, no_cache_window = False):

        if sample_rate == self.sampling_rate: audio_res = audio
        else:
            key_str = str(sample_rate)

            if key_str not in self.resample_kernel:
                if len(self.resample_kernel) > 8: self.resample_kernel.clear()
                self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128).to(self.tensor_device_marker.device)

            audio_res = self.resample_kernel[key_str](audio.squeeze(-1)).unsqueeze(-1)

        mel = self.mel_extractor(audio_res, keyshift, no_cache_window=no_cache_window)
        n_frames = int(audio.shape[1] // self.hop_size) + 1

        if n_frames > int(mel.shape[1]): mel = torch.cat((mel, mel[:, -1:, :]), 1)
        if n_frames < int(mel.shape[1]): mel = mel[:, :n_frames, :]

        return mel 

class Wav2Mel:
    def __init__(self, device=None, dtype=torch.float32):
        self.sample_rate = 16000
        self.hop_size = 160
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.dtype = dtype
        self.stft = STFT(16000, 128, 1024, 1024, 160, 0, 8000)
        self.resample_kernel = {}

    def extract_nvstft(self, audio, keyshift=0, train=False):
        return self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2)

    def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
        audio = audio.to(self.dtype).to(self.device)

        if sample_rate == self.sample_rate: audio_res = audio
        else:
            key_str = str(sample_rate)

            if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample(sample_rate, self.sample_rate, lowpass_filter_width=128)

            self.resample_kernel[key_str] = (self.resample_kernel[key_str].to(self.dtype).to(self.device))
            audio_res = self.resample_kernel[key_str](audio)

        mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) 
        n_frames = int(audio.shape[1] // self.hop_size) + 1

        mel = (torch.cat((mel, mel[:, -1:, :]), 1) if n_frames > int(mel.shape[1]) else mel)
        return mel[:, :n_frames, :] if n_frames < int(mel.shape[1]) else mel

    def __call__(self, audio, sample_rate, keyshift=0, train=False):
        return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)

class DotDict(dict):
    def __getattr__(*args):
        val = dict.get(*args)
        return DotDict(val) if type(val) is dict else val

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

class FCPE:
    def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sample_rate=44100, threshold=0.05, providers=None, onnx=False, legacy=False):
        self.fcpe = FCPEInfer_LEGACY(model_path, device=device, dtype=dtype, providers=providers, onnx=onnx) if legacy else FCPEInfer(model_path, device=device, dtype=dtype, providers=providers, onnx=onnx)
        self.hop_length = hop_length
        self.f0_min = f0_min
        self.f0_max = f0_max
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.threshold = threshold
        self.sample_rate = sample_rate
        self.dtype = dtype
        self.legacy = legacy
        self.name = "fcpe"

    def repeat_expand(self, content, target_len, mode = "nearest"):
        ndim = content.ndim
        content = (content[None, None] if ndim == 1 else content[None] if ndim == 2 else content)

        assert content.ndim == 3
        is_np = isinstance(content, np.ndarray)

        results = torch.nn.functional.interpolate(torch.from_numpy(content) if is_np else content, size=target_len, mode=mode)
        results = results.numpy() if is_np else results
        return results[0, 0] if ndim == 1 else results[0] if ndim == 2 else results

    def post_process(self, x, sample_rate, f0, pad_to):
        f0 = (torch.from_numpy(f0).float().to(x.device) if isinstance(f0, np.ndarray) else f0)
        f0 = self.repeat_expand(f0, pad_to) if pad_to is not None else f0

        vuv_vector = torch.zeros_like(f0)
        vuv_vector[f0 > 0.0] = 1.0
        vuv_vector[f0 <= 0.0] = 0.0

        nzindex = torch.nonzero(f0).squeeze()
        f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
        vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]

        if f0.shape[0] <= 0: return np.zeros(pad_to), vuv_vector.cpu().numpy()
        if f0.shape[0] == 1: return np.ones(pad_to) * f0[0], vuv_vector.cpu().numpy()
        
        return np.interp(np.arange(pad_to) * self.hop_length / sample_rate, self.hop_length / sample_rate * nzindex.cpu().numpy(), f0, left=f0[0], right=f0[-1]), vuv_vector.cpu().numpy()

    def compute_f0(self, wav, p_len=None):
        x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
        p_len = x.shape[0] // self.hop_length if p_len is None else p_len

        f0 = self.fcpe(x, sr=self.sample_rate, threshold=self.threshold) if self.legacy else (self.fcpe(x, sr=self.sample_rate, threshold=self.threshold, f0_min=self.f0_min, f0_max=self.f0_max, p_len=p_len))
        f0 = f0[:] if f0.dim() == 1 else f0[0, :, 0]

        if torch.all(f0 == 0): return f0.cpu().numpy() if p_len is None else np.zeros(p_len), (f0.cpu().numpy() if p_len is None else np.zeros(p_len))
        return self.post_process(x, self.sample_rate, f0, p_len)[0]